›› 2012, Vol. 20 ›› Issue (6): 981-989.DOI: 10.11733/j.issn.1007-0435.2012.06.001
ZHOU Yong-chun1, CHENG Xi-lei2, FAN Jiang-wen1
Received:
2012-05-15
Revised:
2012-07-28
Online:
2012-12-15
Published:
2012-12-28
周咏春1, 程希雷2, 樊江文1
通讯作者:
樊江文
作者简介:
周咏春(1982-),女,辽宁盖州人,博士,主要从事环境生态研究,E-mail: yongchuN2005@126.com
基金资助:
CLC Number:
ZHOU Yong-chun, CHENG Xi-lei, FAN Jiang-wen. Research Progress of Relationships between Plant δ15N and Influence Factors (Review)[J]. , 2012, 20(6): 981-989.
周咏春, 程希雷, 樊江文. 植物氮同位素组成与其影响因子的关系研究进展[J]. , 2012, 20(6): 981-989.
[1] Koba K, Hirobe M, Koyama L, et al. Natural 15N abundance of plants and soil N in a temperate coniferous forest[J]. Ecosystems,2003,6(5):457-469 [2] Robinson D. δ15N as an integrator of the nitrogen cycle[J]. Trends in Ecology & Evolution,2001,16(3):153-162 [3] Martinelli L, Piccolo M, Townsend A, et al. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests[J]. Biogeochemistry,1999,46(1):45-65 [4] Craine J M, Elmore A J, Aidar M P M, et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability[J]. New Phytologist,2009,183(4):980-992 [5] Couto-Vázquez A, González-Prieto S J. Effects of climate, tree age, dominance and growth on δ15N in young pinewoods[J]. Trees,2010,24(3):507-514 [6] Högberg P. 15N natural abundance in soil-plant systems[J]. New Phytologist,1997,137(2):179-203 [7] Michelsen A, Quarmby C, Sleep D, et al. Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots[J]. Oecologia,1998,115(3):406-418 [8] Craine J, Lee W, Bond W, et al. Environmental constraints on a global relationship among leaf and root traits of grasses[J]. Ecology,2005,86(1):12-19 [9] Pardo L H, Templer P H, Goodale C L, et al. Regional assessment of N saturation using foliar and root δ15N[J]. Biogeochemistry,2006,80(2):143-171 [10] Amundson R, Austin A, Schuur E, et al. Global patterns of the isotopic composition of soil and plant nitrogen[J]. Global Biogeochemical Cycles,2003,17(1):1031,10p [11] 刘贤赵,王国安,李嘉竹,等.北京东灵山地区现代植物氮同位素组成及其对海拔梯度的响应[J].中国科学D辑:地球科学,2009,39(10):1347-1359 [12] 石伟琦,王国安,李晓林.丛枝菌根真菌对羊草气体交换和δ13C、δ15N的组成影响[J].核农学报,2008,22(3):353-358 [13] 刘晓宏,赵良菊,Gasaw M,等.东非大裂谷埃塞俄比亚段内C3植物叶片δ13C和δ15N及其环境指示意义[J].科学通报,2007,52(2):199-206 [14] Mariotti A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements[J]. Nature,1983,303(5919):685-687 [15] 苏波,韩兴国,黄建辉.15N自然丰度法在生态系统氮素循环研究中的应用[J].生态学报,1999,19(3):120-128 [16] 李玉中,Redmann R E,祝廷成,等.羊草草原豆科牧草生物固定量研究[J].草地学报,2002,10(3):164-166 [17] Shearer G, Kohl D. Estimates of N2 fixation in ecosystems: the need for and basis of the 15N natural abundance method[M]//Rundel P W, Ehleringer J R, Nagy K A, eds. Stable isotopes in ecological research. Berlin: Springer-Verlag,1988:342-374 [18] Handley L, Raven J. The use of natural abundance of nitrogen isotopes in plant physiology and ecology[J]. Plant, Cell & Environment,1992,15(9):965-985 [19] Aranibar J N, Anderson I C, Epstein H E, et al. Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa[J]. Journal of Arid Environments,2008,72(4):326-337 [20] Evans R. Physiological mechanisms influencing plant nitrogen isotope composition[J]. Trends in Plant Science,2001,6(3):121-126 [21] Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics,2002,33:507-559 [22] Michelsen A, Schmidt I K, Jonasson S, et al. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen[J]. Oecologia,1996,105(1):53-63 [23] Pate J S, Stewart G R, Unkovich M. 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species[J]. Plant Cell and Environment,1993,16(4):365-373 [24] Schmidt S, Stewart G R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum)[J]. Plant Cell and Environment,1997,20(10):1231-1241 [25] Handley L L, Azcon R, Lozano J M R, et al. Plant δ15N associated with arbuscular mycorrhization, drought and nitrogen deficiency[J]. Rapid Communications in Mass Spectrometry,1999,13(13):1320-1324 [26] Hobbie E, Colpaert J. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants[J]. New Phytologist,2003,157(1):115-126 [27] Smith S, Read D. Mycorrhizal symbiosis[M]. New York: Academic Press, 2008 [28] Hobbie E, Jumpponen A, Trappe J. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models[J]. Oecologia,2005,146(2):258-268 [29] Hobbie E A, Macko S A, Williams M. Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions[J]. Oecologia,2000,122(2):273-283 [30] Yoneyama T, Fujihara S, Yagi K. Natural abundance of 15N in amino acids and polyamines from leguminous nodules: unique 15N enrichment in homospermidine[J]. Journal of Experimental Botany,1998,49(320):521 [31] Bergersen F, Peoples M, Turner G. Isotopic discriminations during the accumulation of nitrogen by soybeans[J]. Functional Plant Biology,1988,15(3):407-420 [32] Evans R, Bloom A, Sukrapanna S, et al. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition[J]. Plant, Cell & Environment,1996,19(11):1317-1323 [33] Nadelhoffer K J, Downs M R, Fry B. Sinks for 15N-enriched additions to an oak forest and a red pine plantation[J]. Ecological Applications,1999,9(1):72-86 [34] Högberg P, Högbom L, Schinkel H, et al. 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils[J]. Oecologia,1996,108(2):207-214 [35] Codron J, Codron D, Lee-Thorp J, et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna[J]. Journal of Archaeological Science,2005,32(12):1757-1772 [36] Sah S, Brumme R. Altitudinal gradients of natural abundance of stable isotopes of nitrogen and carbon in the needles and soil of a pine forest in Nepal[J]. Journal of Forest Science,2003,49(1):19-26 [37] 吴田乡,黄建辉.放牧对内蒙古典型草原生态系统植物及土壤δ15N的影响[J].植物生态学报,2010,34(2):160-169 [38] Bai E, Boutton T W, Liu F, et al. Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna[J]. Oecologia,2009,159(3):493-503 [39] Alvarez-Clare S, Mack M C. Influence of precipitation on soil and foliar nutrients across nine Costa Rican forests[J]. Biotropica,2011,43(4):433-441 [40] Körner C. The nutritional status of plants from high altitudes[J]. Oecologia,1989,81(3):379-391 [41] 胡启武,宋明华,欧阳华,等.祁连山青海云杉叶片氮、磷含量随海拔变化特征[J].西北植物学报,2007,27(10):2072-2079 [42] Schmidt S, Stewart G. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status[J]. Oecologia,2003,134(4):569-577 [43] Shearer G, Chien D. The nitrogen-15 abundance in a wide variety of soils[J]. Soil Science Society of America Journal,1978,42(6):899 [44] Shearer G, Kohl D H, Virginia R A, et al. Estimates of N2 fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems[J]. Oecologia,1983,56(2/3):365-373 [45] Jacot K, Lüscher A, N sberger J, et al. Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps[J]. Soil Biology and Biochemistry,2000,32(8/9):1043-1052 [46] Kohls S, van Kessel C, Baker D, et al. Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabasca Glacier, Canada[J]. Soil Biology and Biochemistry,1994,26(5):623-632 [47] Liu W G, Wang Z. Nitrogen isotopic composition of plant-soil in the Loess Plateau and its responding to environmental change[J]. Chinese Science Bulletin,2008,54(2):272-279 [48] Swap R, Aranibar J, Dowty P, et al. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications[J]. Global Change Biology,2004,10(3):350-358 [49] Wang L, D’Odorico P, Ries L, et al. Patterns and implications of plant-soil δ13C and δ15N values in African savanna ecosystems[J]. Quaternary Research,2010,73(1):77-83 [50] Austin A T, Sala O E. Foliar δ15N is negatively correlated with rainfall along the IGBP transect in Australia[J]. Australian Journal of Plant Physiology,1999,26(3):293-295 [51] Aranibar J, Otter L, Macko S, et al. Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands[J]. Global Change Biology,2004,10(3):359-373 [52] Groffman P, Rice C, Tiedje J. Denitrification in a tallgrass prairie landscape[J]. Ecology,1993,74(3):855-862 [53] Peterjohn W, Schlesinger W. Factors controlling denitrification in a Chihuahuan desert ecosystem[J]. Soil Science Society of America Journal,1991,55(6):1694-1701 [54] Lloyd D. Aerobic denitrification in soils and sediments: From fallacies to factx[J]. Trends in Ecology & Evolution,1993,8(10):352-356 [55] Houlton B, Sigman D, Hedin L. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests[J]. Proceedings of the National Academy of Sciences,2006,103(23):8745 [56] Houlton B Z, Sigman D M, Schuur E A G, et al. A climate-driven switch in plant nitrogen acquisition within tropical forest communities[J]. Proceedings of the National Academy of Sciences,2007,104(21):8902 [57] Billings S A, Schaeffer S M, Zitzer S, et al. Alterations of nitrogen dynamics under elevated carbon dioxide in an intact Mojave desert ecosystem: evidence from nitrogen-15 natural abundance[J]. Oecologia,2002,131(3):463-467 [58] Horz H P, Barbrook A, Field C B, et al. Ammonia-oxidizing bacteria respond to multifactorial global change[J]. Proceedings of the National Academy of Sciences,2004,101(42):15136-15141 [59] 林先贵,胡君利,褚海燕,等.土壤氨氧化细菌对大气CO2浓度增高的响应[J].农村生态环境,2005,21(1):44-46 [60] Smith S D, Huxman T E, Zitzer S F, et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem[J]. Nature,2000,408(6808):79-81 [61] Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist,2005,165(2):351-372 [62] Zak D R, Pregitzer K S, Curtis P S, et al. Atmospheric CO2 and the composition and function of soil microbial communities[J]. Ecological Applications,2000,10(1):47-59 [63] Mikan C J, Zak D R, Kubiske M E, et al. Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms[J]. Oecologia,2000,124(3):432-445 [64] Taylor J, Ball A. The effect of plant material grown under elevated CO2 on soil respiratory activity[J]. Plant and Soil,1994,162(2):315-318 [65] Zak D R, Pregitzer K S, Curtis P S, et al. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles[J]. Plant and Soil,1993,151(1):105-117 [66] 庞静,朱建国,谢祖彬.大气CO2体积分数升高对植物N素吸收的影响[J].生态环境,2005,14(3):429-433 [67] BassiriRad H, Griffin K L, Reynolds J F, et al. Changes in root NH+4 and NO3- absorption rates of loblolly and ponderosa pine in response to CO2 enrichment[J]. Plant and Soil,1997,190(1):1-9 [68] Garten C, Van Miegroet H. Relationships between soil nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National Park[J]. Canadian Journal of Forest Research,1994,24(8):1636-1645 [69] Vitousek P, Shearer G, Kohl D. Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms[J]. Oecologia,1989,78(3):383-388 [70] Yi X, Yang Y. Enrichment of stable carbon and nitrogen isotopes of plant populations and plateau pikas along altitudes[J]. Journal of Animal and Feed Sciences,2006,15(4):661-667 [71] Binkley D, Hart S. The components of nitrogen availability assessments in forest soils[M]//Stewart B A, ed. Advances in soil science.New York: Springer Verlag,1989,10:57-112 [72] Garten C. Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed[J]. Ecology,1993,74(7):2098-2113 [73] Miller A, Bowman W. Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? [J]. Oecologia,2002,130(4):609-616 [74] Fan J W, Shao Q Q, Liu J Y, et al. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China[J]. Environmental Monitoring and Assessment,2010,170(1/4):571-584 [75] IPCC. Climate chage 2001: Synthesis report. Inter-governmental panel on climate change. Cambridge: Cambridge University Press, 2001 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||