[1] PASCOLINI-CAMPBELL M,REAGER J T,CHANDANPURKAR H A,et al. A 10 percent increase in global land evapotranspiration from 2003 to 2019[J]. Nature,2021,593(7860):543-547 [2] DU J,QUAN Z,FANG S,et al. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform[J].Environmental science and pollution research international,2020,27(1):1144-1159 [3] CHEN C,PARK T,WANG X,et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability,2019(2):122-129 [4] 孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3-12 [5] KUANG X X,JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research,D. Atmospheres:JGR,2016,121(8):3979-4007 [6] YAO T,THOMPSON L,YANG W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change,2012(2):663-667 [7] FU J,GONG Y,ZHENG W,et al. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019[J]. Science of The Total Environment,2022,825:153951 [8] 涂军,石承苍. 青藏高原退化高寒草甸草原分类的遥感研究[J]. 草地学报,1998(3):226-233 [9] LI X Y,MA Y J,HUANG Y M,et al. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research:Atmospheres,2016,121(18):10470-10485 [10] 尚程鹏,吴通华,姚济敏,等. 不同互补模型对青藏高原多年冻土区地表实际蒸散发的模拟能力评估[J]. 高原气象,2022,41(3):541-557 [11] 张文旭,王根绪,胡兆永. 三种蒸散发测算方法的比较——以青藏高原风火山地区为例[J]. 冰川冻土,2022,44(2):1-10 [12] 孙树娇,周秉荣,周华坤,等.青藏高原典型高寒荒漠生长季蒸散及水分消耗特征研究[J].草地学报,2021,29(S1):137-145 [13] LI T. Interdependent Dynamics of LAI-ET across Roofing Landscapes:The Mongolian and Tibetan Plateaus[J]. Journal of Resources and Ecology,2019,10(3):296 [14] 霍莉莉,陈懂懂,李奇,等. 三江源地区草地植物功能性状与蒸散发关系研究[J].草地学报,2022,30(8):2182-2190 [15] 姚天次,卢宏玮,于庆,等. 近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展,2020,35(5):534-546 [16] LIU X,YANG W,ZHAO H,et al. Effects of the freeze-thaw cycle on potential evapotranspiration in the permafrost regions of the Qinghai-Tibet Plateau,China[J]. Science of The Total Environment,2019,687:257-266 [17] 韩丽,宋克超,张文江,等. 长江源头流域水文要素时空变化及对气候因子的响应[J]. 山地学报,2017,35(2):129-141 [18] 韩典辰,张方敏,陈吉泉,等. 半干旱区草地站蒸散特征及其对气象因子和植被的响应[J]. 草地学报,2021,29(1):166-173 [19] MA N,ZHANG Y Q. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural and Forest Meteorology,2022,317:108887 [20] 于海英,许建初. 气候变化对青藏高原植被影响研究综述[J]. 生态学杂志,2009,28(4):747-754 [21] 冉有华,王磊,曾甜,等. "一带一路"亚洲关键区域流域边界图[DB/OL]. http://data.tpdc.ac.cn/zh-hans/,2021-04-19/2022-06-17 [22] MU Q Z,HEINSCH F A,ZHAO M S,et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote sensing of Environment,2007,111(4):519-536 [23] 吴桂平,刘元波,赵晓松,等.基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J].地理研究,2013,32(4):617-627 [24] 贺添,邵全琴. 基于MOD16产品的我国2001-2010年蒸散发时空格局变化分析[J]. 地球信息科学学报,2014,16(6):979-988 [25] 安淳淳. 基于MODIS数据的青藏高原植被物候监测及其对气候变化的响应研究[D].成都:中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2019:91-97 [26] 高清竹,万运帆,李玉娥,等. 藏北高寒草地NPP变化趋势及其对人类活动的响应[J]. 生态学报,2007,27(11):4612-4619 [27] JI Z X,PEI T T,CHEN Y,et al. The driving factors of grassland water use efficiency along degradation gradients on the Qinghai-Tibet Plateau,China[J]. Global Ecology and Conservation,2022(35):e02090 [28] TIAN F,ZHANG Y. Spatiotemporal patterns of evapotranspiration,gross primary productivity,and water use efficiency of cropland in agroecosystems and their relation to the water-saving project in the Shiyang River Basin of Northwestern China[J]. Computers and Electronics in Agriculture,2020(172):105379 [29] SANDHOLT I,RASMUSSEN K,ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment,2002(79):213-224 [30] SÁNCHEZ GRANERO M A,TRINIDAD SEGVIA J E,GARCÍA PÉREZ J. Some comments on Hurst exponent and the long memory processes on capital markets[J]. Physica A Statistical Mechanics & Its Applications,2008,387(22):5543-5551 [31] BING L,SU H,SHAO Q,et al. Changing characteristic of land surface evapotranspiration and soil moisture in China during the past 30 years[J]. Geo-information Science,2012,14(1):1-13 [32] LI X,HE Y,ZENG Z,et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years[J]. Agricultural and Forest Meteorology,2018(259):131-140 [33] ZENG Z,PENG L,PIAO S. Response of terrestrial evapotranspiration to Earth's greening[J]. Current Opinion in Environmental Sustainability,2018(33):9-25 [34] LU F,HU H,SUN W,et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4039-4044 [35] OUYANG Z,HUA Z,YANG X,et al. Improvements in ecosystem services from investments in natural capital[J]. Science,2016,352(6292):1455-1459 [36] 裴婷婷,李小雁,吴华武,等.黄土高原植被水分利用效率对气候和植被指数的敏感性研究[J]. 农业工程学报,2019,35(5):119-125,319 [37] 张永强,孔冬冬,张选泽,等. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报,2021,76(3):584-594 [38] LI X,WANG L,CHEN D,et al. Seasonal evapotranspiration changes (1983—2006) of four large basins on the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres,2015,119(23):13,079-13,095 [39] 夏龙,宋小宁,蔡硕豪,等.地表水热要素在青藏高原草地退化中的作用[J]. 生态学报,2021,41(11):4618-4631 [40] WANG H W,QI Y,HUANG C L. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau,China[J]. Sciences in Cold and Arid Regions,2019,11(2):62-70 [41] 张骞,马丽,张中华,等.青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望[J]. 生态学报,2019,39(20):7441-7451 [42] 李霞,崔霞,何晓菲,等.柴达木盆地水源涵养功能时空特征分析[J]. 草业科学,2022,39(4):660-671 [43] 涂晨雨,贾绍凤,朱文彬,等. 柴达木盆地蒸散发遥感估算与耗水有效性评价研究[J]. 生态学报,2022,42(13):5404-5415 [44] 刘秋漫. 近年来柴达木盆地遥感生态环境质量评价[D].西宁:青海师范大学,2020:47-48 |