[1] HARTMANN H,TRUMBORE S. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know[J]. New Phytologist,2016,211:386-403 [2] WANG B,GONG J R,ZHANG Z H,et al. Nitrogen addition alters photosynthetic carbon fixation,allocation of photo-assimilates,and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia[J]. Agricultural and Forest Meteorology,2019,279,107743 [3] 宋琳,雒文涛,马望,等. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响[J]. 植物生态学报,2020,44:669-676 [4] GONG J R,ZHANG Z H,WANG B,et al. N addition rebalances the carbon and nitrogen metabolisms of Leymus chinensis through leaf N investment[J]. Plant Physiology and Biochemistry,2022,185:221-232 [5] 李金霞,朱亚男,孙小妹,等. 氮磷添加对黑果枸杞(Lycium ruthenicum)营养器官非结构性碳水化合物特征的影响[J]. 中国沙漠,2021,41(2):200-211 [6] DIETZE M C,SAIA A,CARBONE M S,et al. Nonstructural carbon in woody plants[J]. Annual Review of Plant Biology,2014,65:667-687 [7] LIU X J,ZHANG Y,HAN W X,et al. Enhanced nitrogen deposition over China[J]. Nature,2013,494:459-462 [8] YU G R,JIA Y L,HE N P,et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience,2019,12:424-429 [9] 郭建斌,徐红伟,薛萐. 黄土丘陵区撂荒草地不同生态位物种非结构性碳水化合物对氮添加的响应[J]. 水土保持学报,2022,36(3):153-158 [10] 王雪,雒文涛,庾强,等. 半干旱典型草原养分添加对优势物种叶片氮磷及非结构性碳水化合物含量的影响[J]. 生态学杂志,2014,33(7):1795-1802 [11] DU Y,LU R L,XIA J Y. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants[J]. Functional Ecology,2020,34:1525-1536 [12] 高树琴,段瑞,王竑晟,等. 北方农牧交错带在保障国家大粮食安全中发挥重要作用[J]. 中国科学院院刊,2021,36(06):643-651 [13] 赵芳草,陈鸿飞,王一昊,等. 盐渍化草地根际土壤理化性质对降水改变和氮添加的响应[J]. 草地学报,2022,30(9):2430-2437 [14] 刘平,刘学军,骆晓声,等. 山西北部农村区域大气活性氮沉降特征[J]. 生态学报,2016,36(17):5353-5359 [15] CHEN X P,DIAO H J,WANG S P,et al. Plant community mediated methane uptake in response to increasing nitrogen addition level in a saline-alkaline grassland by rhizospheric effects[J]. Geoderma,2023,429:116235 [16] 燕学东,陈晓鹏,郝杰,等. 农牧交错带草地生态系统N2O通量对短期氮、磷添加的响应[J]. 草地学报,2022,30(12):3199-3206 [17] 徐小惠,刁华杰,覃楚仪,等. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报,2021,45(1):85-95 [18] 杨建强,刁华杰,胡姝娅,等. 不同水平氮添加对盐渍化草地土壤微生物特征的影响[J]. 植物生态学报,2021,45(07):780-789 [19] 董涵君,王兴昌,苑丹阳,等. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报,2022,46(06):722-734 [20] 刘颖慧,贾海坤,高琼. 植物同化物分配及其模型研究综述[J]. 生态学报,2006(6):1981-1992 [21] LU X T,FRESCHET G T,FIYNN D F B. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland[J]. Journal of Ecology,2012,100:144-150 [22] HOU S L,YIN J X,Yang J J,et al. Consistent responses of litter stoichiometry to N addition across different biological organization levels in a semi-arid grassland[J]. Plant and Soil,2017,421:191-202 [23] LIU J,WU N N,WANG H,et al. Nitrogen addition affects chemical compositions of plant tissues,litter and soil organic matter[J]. Ecology,2016,97:1796-1806 [24] LIANG X Y,ZHANG T,LU X K,et al. Global response patterns of plant photosynthesis to nitrogen addition:A meta-analysis[J]. Global Change Biology,2020,26:3585-3600 [25] XIA J Y,WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist,2008,179:428-439 [26] KUMAR R,BISHOP E,BRIDGES W C,et al. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize[J]. Plant Cell Environment,2019,42:2597-2611 [27] SONG L,LUO W T,GRIFFIN-NOIAN R J,et al. Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient[J]. Science of the Total Environment,2022,822:153589 [28] 张豆,景航,王国梁. 人工油松林中不同植物叶片非结构性碳水化合物含量对氮添加的响应[J]. 应用生态学报,2019,30(2):489-495 [29] MA F F,SONG B,QUAN Q,et al. Light Competition and Biodiversity Loss Cause Saturation Response of Aboveground Net Primary Productivity to Nitrogen Enrichment[J]. Journal of Geophysical Research:Biogeosciences,2020:125 [30] LU X K,VITOUSEK P M,MAO Q G,et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115,5187-5192 [31] SULPICE R,FLIS A,IAVAKOV A A,et al. Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods[J]. Molecular Plant,2014,7:137-155 [32] HERRERA-RAMIREZ D,SIERA C S,ROMERMANN C,et al. Starch and lipid storage strategies in tropical trees relate to growth and mortality[J]. New Phytologist,2021,230:139-154 |