[1] 马子清.山西植被[M].北京:中国科学技术出版社,2001:41-47 [2] GRABHERR G,GOTTFRIED M,GRUBER A,et al. Patterns and current changes in alpine plant diversity[J]. Arctic and alpine biodiversity:patterns,causes and ecosystem consequences,1995:167-181 [3] SUN J,MA B,LU X. Grazing enhances soil nutrient effects:Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau[J]. Land Degradation and Development,2018,29(2):337-348 [4] NIKLAS K J. Modelling below- and above-ground biomass for non-woody and woody plants[J]. Annals of Botany,2005,95(2):315-321 [5] GEDROC J J,K D M MCCONNAUGHAY,J S COLEMAN. Plasticity in root/shoot partitioning:optimal,ontogenetic,or both[J]. Functional Ecology,1996,10(1):44-50 [6] SUN J,WANG X,CHENG G,et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe,northern Tibetan Plateau[J]. Plos One,2014,9(9):e108821 [7] GAO X X,DONG S K,XU Y D,et al. Plant biomass allocation and driving factors of grassland revegetation in a Qinghai‐Tibetan Plateau chronosequence[J]. Land Degradation and Development,2021,32(4):1732-1741 [8] 杨昊天,李新荣,刘立超,等.荒漠草地4种灌木生物量分配特征[J].中国沙漠,2013,33(5):1340-1348 [9] 孟欢欢,张媛媛,周晓兵,等.古尔班通古特沙漠草本植物生物量分配特征[J].中国沙漠,2022,42(1):96-107 [10] CHENG D L,NIKLAS K J. Above- and below-ground biomass relationships across 1534 forested communities[J]. Annals of Botany,2007,99(1):95-102 [11] KOU D,YANG G,LI F,et al. Progressive nitrogen limitation across the Tibetan alpine permafrost region[J]. Nature communications,2020,11(1):3331 [12] 王敏,苏永中,杨荣,等.黑河中游荒漠草地地上和地下生物量的分配格局[J].植物生态学报,2013,37(3):209-219 [13] 李永康,刘金龙,许冬梅,等.宁夏荒漠草原蒙古冰草资源分配特征[J].草地学报,2023,31(4):1125-1133 [14] 武帅楷,郝杰,刁华杰,等.晋北农牧交错带草地生物量对短期放牧强度的响应[J].草地学报,2023,29(7):1-9 [15] 韩小雨,郭宁,李冬冬,等.氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J].草业学报,2022,31(1):13-25 [16] 庞晓瑜.增温对岷江冷杉及亚高山草甸生长和营养分配的影响[D].北京:中国林业科学研究院,2017:3-4 [17] 杨春勐,谢勇,初晓辉,等.不同干扰方式对滇西北亚高山草甸生物量和碳储量的影响[J].中国草地学报,2018,40(3):62-67 [18] 高本强,袁自强,王斌先,等.施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响[J].植物生态学报,2014,38(5):417-424 [19] 杨阳,刘秉儒.宁夏荒漠草原不同群落生物多样性与生物量关系及影响因子分析[J].草业学报,2015,24(10):48-57 [20] 马丽,徐满厚,周华坤,等.山西亚高山草甸植被生物量的地理空间分布[J].生态学杂志,2018,37(8):2244-2253 [21] JOHNSON N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales[J]. New Phytologist,2010,185(3):631-647 [22] HECTOR A,SCHMID B,BEIERKUHNLEIN C,et al. Plant diversity and productivity experiments in European grasslands[J]. Science,1999,286:1123-1127 [23] JING X,SANDERS N J,SHI Y,et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J]. Nature Communications,2015,6:8159 [24] HUSTON M A. Hidden treatments in ecological experiments:Re-evaluating the ecosystem function of biodiversity[J]. Oecologia,1997,110:449-460 [25] HOOPER D U,CHAPIN III F S,EWEL J J,et al. Effects of biodiversity on ecosystem functioning:A consensus of current knowledge[J]. Ecological Monographs,2005,75(1):3-35 [26] POORTER H,NIKLAS K J,REICH P B,et al. Biomass allocation to leaves,stems and roots:Meta-analyses of interspecific variation and environmental control[J]. New Phytologist,2012,193(1):30-50 [27] LAMBERS H,RAVEN J A,SHAVER G R,et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology and Evolution,2008,23(2):95-103 [28] MOMMER L,VAN RUIJVEN J,DE CALUWE H,et al. Unveiling below-ground species abundance in a biodiversity experiment:A test of vertical niche differentiation among grassland species[J]. Journal of Ecology,2010,98(5):1117-1127 [29] 雷隆举,赵锦梅,张雪,等.祁连山东段不同植物群落的特征及生物量分配[J].草业科学,2020,37(5):853-863 [30] 宋清华.高寒退化草地西北针茅生物量分配和根系功能性状的环境适应性[D].兰州:西北师范大学,2016:12-13 [31] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:40-60 [32] THE R CORE TEAM. R:a Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna,Austria[EB/OL]. http://www.R-project.org/,2023-01-01/2023-07-28 [33] KISSLING M,HEGETSCHWEILER K T,RUSTERHOLZ H P,et al. Short-term and long-term effects of human trampling on above-ground vegetation,soil density,soil organic matter and soil microbial processes in suburban beech forests[J]. Applied Soil Ecology,2009,42(3):303-314 [34] 刘光荣.旅游干扰对庐山风景区微生物多样性的影响[J].山东农业大学学报(自然科学版),2015,46(2):274-279 [35] 王雪超,刘艳萍,高永,等.旅游扰动对草原植被及土壤的影响[J].草原与草坪,2021,41(6):127-138 [36] 王钰.旅游干扰对长白山苔原带植物多样性和土壤微生物的影响[D].长春:吉林大学,2022:3-4 [37] 万里强,陈玮玮,李向林,等.放牧对草地土壤含水量与容重及地下生物量的影响[J].中国农学通报,2011,27(26):25-29 [38] KIER L P,WEISBACH A N,WEINER J. Root and shoot competition:A meta-analysis[J]. Journal of Ecology,2013,101(5):1298-1312 [39] LONG S P,HUTCHIN P R. Primary production in grasslands and coniferous forests with climate change:An overview[J]. Ecological Applications,1991,1(2):139-156 [40] 王长庭,王启基,龙瑞军,等.高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究[J].植物生态学报,2004(2):240-245 [41] 赵彩红.基于植被及土壤生化特性分析旅游对草原生态的影响[J].分子植物育种,2022,20(17):5904-5908 [42] 张金屯.芦芽山亚高山草甸优势种群和群落的二维格局分析[J].生态学报,2005(6):1264-1268 [43] 李素清,张金屯,上官铁梁.芦芽山亚高山草甸的数量分类与排序研究[J].西北植物学报,2005(10):2062-2067 [44] 李巧峡,赵庆芳,马世荣,等.嵩草属植物研究进展[J].西北师范大学学报(自然科学版),2006(6):78-82 [45] 武胜男,张曦,高晓霞,等.三江源区“黑土滩”型退化草地人工恢复植物群落的演替动态[J].生态学报,2019,39(7):2444-2453 [46] 宋昕旖,聂瑾璐,杨梦涵,等.祁连山不同海拔珠芽蓼光合特性和繁殖策略[J].应用与环境生物学报,2022,28(6):1527-1533 [47] 张芊妤,曾奕丰,李文洁,等.季节放牧下青藏高原高寒草甸牧草生物量空间分布特征[J].草业科学,2022,39(2):318-327 [48] 武俊智,上官铁梁,张婕,等.旅游干扰对马仑亚高山草甸植物物种多样性的影响[J].山地学报,2007(5):534-540 [49] MOU X M,LI X G,ZHAO N N,et al. Tibetan sedges sequester more carbon belowground than grasses:A13C labeling study[J]. Plant and Soil,2018,426:287-298 [50] 邢云飞,王晓丽,刘永琦,等.不同建植年限人工草地植物群落和土壤有机碳氮特征[J].草地学报,2020,28(2):521-528 [51] 鲁庆彬,游卫云,赵昌杰,等.旅游干扰对青山湖风景区植物多样性的影响[J].应用生态学报,2011,22(2):295-302 [52] 褚双双.国产电影票房影响因素研究与预测[D].大连:东北财经大学,2020:19-20 [53] 刘兴良,史作民,杨冬生,等.山地植物群落生物多样性与生物生产力海拔梯度变化研究进展[J].世界林业研究,2005(4):27-34 [54] 李凯辉,王万林,胡玉昆,等.不同海拔梯度高寒草地地下生物量与环境因子的关系[J].应用生态学报,2008(11):2364-2368 [55] 管东生,林卫强,陈玉娟.旅游干扰对白云山土壤和植被的影响[J].环境科学,1999(6):6-9 [56] 秦远好,谢德体,魏朝富,等.土壤生态环境对游憩活动冲击的响应研究[J].水土保持学报,2006(3):61-65 [57] 邓娜.冻融作用对松嫩草地土壤氮、磷矿化的影响[D].长春:东北师范大学,2016:35-36 [58] LI Y,NIU S,YU G. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:A meta-analysis[J]. Global Change Biology,2016,22(2):934-943 |