[1] 孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3-12 [2] 石明明,王喆,周秉荣,等. 青藏高原草地退化特征及其与气候因子的关系[J]. 应用生态学报:2022,33(12):3271-3278 [3] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan plateau:A review of the evidence of its magnitude and causes[J]. Journal of Arid Environments,2010,74(1):1-12 [4] WEI Y,LU H,WANG J,et al. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the qinghai-tibetan plateau from 1981 to 2015[J]. Earth's Future,2022,10(5):e2021EF002566 [5] SUN J,WANG P,WANG H,et al. Changes in plant communities,soil characteristics,and microbial communities in alpine meadows degraded to different degrees by pika on the Qinghai-Tibetan Plateau[J]. Global Ecology and Conservation,2021,27:e01621 [6] 尚占环,董全民,施建军,等. 青藏高原"黑土滩"退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题[J]. 草地学报,2018,26(1):1-21 [7] LI X L,PERRY G L W,BRIERLEY G,et al. Quantitative assessment of degradation classifications for degraded alpine meadows,Sanjiangyuan,Western China[J]. Land Degradation and Development,2014,25(5):417-427 [8] GUO N,DEGEN A A,DENG B,et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau[J]. Agriculture,Ecosystems and Environment,2019,284:106593 [9] 李发祥,张涛,罗玉珠,等. 黄河源区黑土滩人工草地地表结皮与未结皮区土壤微生物多样性[J]. 草地学报,2018,26(1):45-52 [10] SHANG Z H,MA Y S,LONG R J,et al. Effect of fencing,artificial seeding and abandonment on vegetation composition and dynamics of 'black soil land' in the headwaters of the Yangtze and the Yellow Rivers of the Qinghai-Tibetan Plateau[J]. Land Degradation and Development,2008,19(5):554-563 [11] WANG C T,WANG G X,LIU W,et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow[J]. Israel Journal of Ecology and Evolution,2013,59(3):141-153 [12] HE H,LI H,ZHU J,et al. The asymptotic response of soil water holding capacity along restoration duration of artificial grasslands from degraded alpine meadows in the Three River Sources,Qinghai-Tibetan Plateau,China[J]. Ecological Research,2018,33(5):1001-1010 [13] 贾映兰,魏培洁,吴明辉,等. 多年冻土区"黑土滩"土壤团聚体对人工建植的响应[J]. 草地学报,2022,30(8):1934-1943 [14] LI W, WANG J L,ZHANG X J,et al. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau[J]. Ecological Engineering,2018,111:134-142 [15] 杨希智,王长庭,字洪标,等. 三江源区不同建植年限人工草地土壤微生物群落结构特征[J]. 应用与环境生物学报,2015,21(2):341-349 [16] 孙建财,杨沙,武玉坤,等. 高寒混播草地优势草种生态位与种间竞争力分析[J]. 草地学报,2022,30(5):1273-1279 [17] 孙建财. 基于生态位的高寒地区人工草地优势种种间竞争研究[D]. 西宁:青海大学,2022:30-31 [18] CHEN K,ZHOU H,LU B,et al. Single-Species Artificial Grasslands Decrease Soil Multifunctionality in a Temperate Steppe on the Qinghai-Tibet Plateau[J]. Agronomy,2021,11(11):2092 [19] 陈志宏,李新一,洪军. 我国草种质资源的保护现状、存在问题及建议[J]. 草业科学,2018,35(1):186-191 [20] GAO X,DONG S,XU Y,et al. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time:A case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau[J]. Agriculture,Ecosystems & Environment,2019,279:169-177 [21] 张小芳,张春平,杨增增,等. 单播措施下三江源区高寒退化草地恢复效果评估[J]. 草地学报,2022,30(10):2834-2844 [22] 马安娜,于贵瑞,何念鹏,等. 中国草地植被地上和地下生物量的关系分析[J]. 第四纪研究,2014,34(4):769-776 [23] 李洁,潘攀,王长庭,等. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报,2021,30(3):28-40 [24] ESKELINEN A,HARPOLE W S,JESSEN M T,et al. Light competition drives herbivore and nutrient effects on plant diversity[J]. Nature,2022,611(7935):301-305 [25] WU G L,YANG Z,CUI Z,et al. Mixed artificial grasslands with more roots improved mine soil infiltration capacity[J]. Journal of Hydrology,2016,535:54-60 [26] LIU H,MI Z,LIN L,et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences,2018,115(16):4051-4056 [27] 李兰平,张慧敏,李宏林,等. 不同功能群及先锋种在高寒人工草地建植初期的作用[J]. 草地学报,2021,29(7):1513-1521 [28] 李文,魏廷虎,永措巴占,等. 混播比例对三江源人工草地植被和土壤养分特征的影响[J]. 草业学报,2021,30(12):39-48 [29] WU S,WEN L,DONG S,et al. The Plant Interspecific Association in the Revegetated Alpine Grasslands Determines the Productivity Stability of Plant Community Across Restoration Time on Qinghai-Tibetan Plateau[J]. Frontiers in Plant Science,2022,13:850854 [30] GROSS K,CARDINALE B J,FOX J W,et al. Species Richness and the Temporal Stability of Biomass Production:A New Analysis of Recent Biodiversity Experiments[J]. The American Naturalist,2014,183(1):1-12 [31] 佘延娣,杨晓渊,马丽,等. 退化高寒草甸植物群落和土壤特征及其相互关系研究[J]. 草地学报,2021,29(S1):62-71 [32] 张宇恒,张莉,张秀娟,等. 退化程度对玛沁高寒草甸植物群落及土壤持水能力的影响[J]. 草业科学,2022,39(2):235-246 [33] 苟照君. 黄河上游高寒草地土壤碳、氮、磷、pH值分布特征及影响因素[D]. 西宁:青海师范大学,2019:31-32 [34] TIAN L,ZHAO L,WU X,et al. Vertical patterns and controls of soil nutrients in alpine grassland:Implications for nutrient uptake[J]. Science of The Total Environment,2017,607-608:855-864 [35] ZHOU J,LI X L,PENG F,et al. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Global Change Biology,2021,27(24):6578-6591 [36] 王小燕,张彩军,蒲强胜,等. 人工草地建植对甘南高寒草甸草地生产力及土壤理化特征的影响[J]. 草地学报,2022,30(2):288-296 [37] 刘攀. 尿素配施脲酶/硝化抑制剂对三江源区退化高寒草甸氮转化的影响及作用机理研究[D]. 西宁:青海师范大学,2021:4-5 [38] REN H,TIAN L,ZHU Y,et al. Nitrogen and water addition alter nitrogen uptake preferences of two dominant plant species in a typical Inner Mongolian steppe[J]. Chinese Science Bulletin,2022,67(13):1459-1468 [39] 苗艳芳,李生秀,徐晓峰,等. 冬小麦对铵态氮和硝态氮的响应[J]. 土壤学报,2014,51(3):564-574 [40] 孙悦,徐兴良,YAKOV K. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报,2014,38(1):62-75 [41] WANG G,XUE S,LIU F,et al. Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum[J]. Plant and Soil,2017,415(1-2):423-434 |