[1] 张玉娟,郭睿,张兆恒,等. 冷等离子体处理对草地早熟禾幼苗抗盐性的影响[J]. 草地学报,2022,30(9):2365-2374 [2] 钱文武,黄志超,朱慧森,等. KNO3和抗坏血酸对老化草地早熟禾种子活力的影响[J]. 草地学报,2022,30(1):69-75 [3] SHI H T,YE T T,CHANG Z L,et al. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermuda grass (Cynodon dactylon (L). Pers.) [J]. Plant Physiology and Biochemistry,2013,71:226-234 [4] REINERT J A,CHANDRA A,ENGELKE M C,et al. Susceptibility of genera and cultivars of turfgrass to southern chinch bug Blissus insularis (Hemiptera:Blissidae) [J]. Florida Entomologist,2011,94(2):158-163 [5] MENG D,DONG B Y,NIU L L,et al. The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis [J]. The Plant Journal,2021,106(5):1278-1297 [6] YANG W Q,KONG Z S,XU W Y,et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.) [J]. Journal of Genetics and Genomics,2008,35(9):531-543 [7] WANG C,ZHANG W J,LI Z H,et al. FIP1 Plays an important role in nitrate signaling and regulates CIPK8 and CIPK23 expression in Arabidopsis[J]. Frontiers in Plant Science,2018,9:593 [8] SUN T,WANG Y,WANG M,et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.) [J]. BMC Plant Biology,2015,15:269 [9] ZHANG T T,LI Y X,KANG Y Q,et al. The Dendrobium catenatum DcCIPK24 increases drought and salt tolerance of transgenic Arabidopsis[J]. Industrial Crops and Products,2022,187(A):115375 [10] ZHOU L M,LAN W Z,CHEN B Q,et al. A calcium sensor-regulated protein kinase,CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19,is required for pollen tube growth and polarity [J]. Plant Physiology,2015,167(4):1351-1360 [11] MAO J J,MANIK S M N,SHI S J,et al. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana[J]. Genes,2016,7(9):62 [12] TANG R J,ZHAO F G,GARCIA V J,et al. Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(10):3134-3139 [13] LUAN S,KUDLA J,YALOCSKY S,et al. Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants [J]. Plant Cell,2002,14:S389-S400 [14] QIU Q S,GUO Y,DIETRICH M A,et al. Regulation of SOS1 as plasma membrane Na+/H+ exchanger in Arabidopsis thaliana,by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(12):8346-8441 [15] KIM B G,WAADT R,CHEONG Y H,et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. Plant Journal,2007,52(3):473-484 [16] QUAN R D,LIN H X,MENDOZA I,et al. SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress [J]. Plant Cell,2007,19(4):1415-1431 [17] XU J,LI H D,CHEN L Q,et al. A protein kinase,interacting with two calcineurin B-like proteins,regulates K+ transporter AKT1 in Arabidopsis[J]. Cell,2006,125(7):1347-1360 [18] CHEONG Y H,PANDEY G K,GRANT J J,et al. Two calcineurin B-like calcium sensors,interacting with protein kinase CIPK23,regulate leaf transpiration and root potassium uptake in Arabidopsis[J]. Plant Journal,2007,52(2):223-239 [19] 金一锋,陈阳,高岩松,等. 草地早熟禾SnRK2.2基因克隆及非生物胁迫响应分析[J]. 草地学报,2022,30(7):1659-1667 [20] SU W H,REN Y J,WANG D J,et al. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum[J]. BMC Genomics,2020,21(1):868 [21] LERAN S,EDEL K H,PERVENT M,et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2,a phosphatase inactivated by the stress hormone abscisic acid [J]. Science Signalling,2015,8(375):ra43 [22] KIM K N,CHEONG Y H,GRANT J J,et al. CIPK3,a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis[J]. Plant Cell,2015,15(2):411-423 [23] KUDLA J,XU Q,HARTER K,et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals [J]. Proceedings of The National Academy of Sciences of the United States of America,1999,96(8):4718-4723 [24] 冯志娟,徐盛春,刘娜,等. 菜用大豆CIPK基因对逆境胁迫及激素的响应特征[J]. 植物遗传资源学报,2017,18(6):1168-1178 [25] 陈小晶,王东梅,关红辉,等.玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究[J].植物遗传资源学报,2022,23(4):1064-1075 [26] HRABAK E M,CHAN C W M,GRIBSKOV M,et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiology,2003,132(2):666-680 [27] PANDEY G K. Emergence of a novel calcium signaling pathway in plants:CBL-CIPK signaling network [J]. Physiology and Molecular Biology of Plants,2008,14(1):51-68 [28] LI L B,ZHANG Y R,LIU K C,et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in Sorghum[J]. Agricultural Sciences in China,2010,9(1):19-30 [29] CHEN X F,GU Z M,XIN D D,et al. Identification and characterization of putative CIPK genes in maize [J]. Journal of Genetics and Genomics,2011,38(2):77-87 [30] ZHU K K,CHEN F,LIU J Y,et al. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean [J]. Scientific Reports,2016,6:28225 [31] ALEMAN F,NIEVES-CORDONES M,MARTINEZ V,et al. Root K+ acquisition in plants:The Arabidopsis thaliana model [J]. Plant and Cell Physiology,2011,52(9):1603-1612 [32] RAGEL P,RODENAS R,GARCIA-MARTIN E,et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots [J]. Plant Physiology,2015,169(4):2863-2873 [33] SHI J R,KIM K N,RITZ O,et al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis[J]. Plant Cell,1999,11(12):2393-2405 [34] THODAY-KENNEDY E L,JACOBS A K,ROY S J,et al. The role of the CBL-CIPK calcium signalling network in regulating ion transport in response to abiotic stress [J]. Plant Growth Regulation,2015,76(1):3-12 [35] XIANG Y,HUANG Y M,XIONG L G. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology,2007,144(3):1416-1428 [36] MO C Y,WAN S M,XIA Y Q,et al. Expression patterns and identified protein-protein interactions suggest that Cassava CBL-CIPK signal networks function in responses to abiotic stresses [J]. Frontiers in Plant Science,2018,9:269 [37] ZHANG H C,LV F L,HAN X,et al. The calcium sensor PeCBL1,interacting with PeCIPK24/25 and PeCIPK26,regulates Na+/K+homeostasis in Populus euphratica[J]. Plant Cell Reports,2013,32(5):611-621 [38] HUERTAS R,OLIAS R,ELJAKAOUI Z,et al. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato [J]. Plant Cell and Environment,2012,35(8):1467-1482 |