[1] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494:459-462 [2] YU G R, JIA Y L, PIAO S L, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12:424-429 [3] BAI Y F, WU J G, CIARK C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:Evidence from Inner Mongolia grasslands[J]. Global Change Biology, 2010, 16:358-372 [4] PENG Y F, CHEN H Y H, YANG Y. Global pattern and drivers of nitrogen saturation threshold of grassland productivity[J]. Functional Ecology, 2020, 34:1979-1990 [5] 高贝, 胡艳宇, 张志委, 等. 氮素添加对呼伦贝尔草甸草原植物氮钾元素含量和计量比的影响[J]. 应用生态学报, 2022, 33:981-987 [6] LU X T, REED S, YU Q, et al. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland[J]. Global Change Biology, 2013, 19:2775-2784 [7] GONG J R, ZHANG Z H, WANG B, et al. N addition rebalances the carbon and nitrogen metabolisms of Leymus chinensis through leaf N investment[J]. Plant Physiology and Biochemistry, 2022, 185:221-232 [8] HU Y, GUO A X, LI X Y, et al. Multi-trait functional diversity predicts ecosystem multifunctionality under nitrogen addition in a desert steppe[EB/OL]. https://doi.org/10.1007/s11104-022-05731-8, 2022-10-05/2023-07-12 [9] LI L, GAO X P, LI X Y, et al. Nitrogen (N) and phosphorus (P) resorption of two dominant alpine perennial grass species in response to contrasting N and P availability[J]. Environmental and Experimental Botany, 2016, 127:37-44 [10] SU Y, MA X F, LE J J, et al. Decoupling of nitrogen and phosphorus in dominant grass species in response to long-term nitrogen addition in an alpine grassland in Central Asia[J]. Plant Ecology, 2021, 222(9):261-274 [11] SU Y, MA X F, GONG Y M, et al. Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China's grasslands:A meta-analysis[J]. Catena, 2021, 199:105110 [12] HOU S L, YANG J J, YIN J X, et al. Changes of community composition strengthen the positive effects of nitrogen deposition on litter N:P stoichiometry in a semi-arid grassland[J]. Plant and Soil, 2020, 473:63-71 [13] PENG Y F, LI F, ZHOU G Y, et al. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe[J]. Global Change Biology, 2017, 23:5249-5259 [14] ZHANG D Y, PENG Y F, LI F, et al. Above- and below-ground resource acquisition strategies determine plant species responses to nitrogen enrichment[J]. Annals of Botany, 2021, 128:31-44 [15] ZHANG J H, REN T T, YANG J J, et al. Leaf multi-element network reveals the change of species dominance under nitrogen deposition[J]. Frontiers in Plant Science, 2021, 12:580340 [16] FENG X, WANG R Z, YU Q, et al. Decoupling of plant and soil metal nutrients as affected by nitrogen addition in a meadow steppe[J]. Plant and Soil, 2019, 443:337-351 [17] HUANG J, WANG X M, ZHENG M H, et al. 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China[J]. Forest Ecology and Management, 2021, 481:118748 [18] HERRER-RAMIRE D, SIERRA C A, ROMERMAN C, et al. Starch and lipid storage strategies in tropical trees relate to growth and mortality[J]. New Phytologist, 2021, 230:139-154 [19] LI W B, ZHANG H X, HUANG G Z, et al. Effects of nitrogen enrichment on tree carbon allocation:A global synthesis[J]. Global Ecology and Biogeography, 2019, 29:573-589 [20] WANG B, GONG J R, ZHANG Z H, et al. Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia[J]. Agricultural and Forest Meteorology, 2019, 279:107743 [21] 郭建斌, 徐红伟, 薛萐. 黄土丘陵区撂荒草地不同生态位物种非结构性碳水化合物对氮添加的响应[J]. 水土保持学报, 2022, 36(3):153-158 [22] 王雪, 雒文涛, 庾强, 等. 半干旱典型草原养分添加对优势物种叶片氮磷及非结构性碳水化合物含量的影响[J]. 生态学杂志, 2014, 33(7):1795-1802 [23] DU Y, LU R L, XIA J Y. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants[J]. Functional Ecology, 2022, 34:1525-1536 [24] CHOME M, GUITTONNY-LARCHEVEQU M, FERNANDEZ C, et al. Plant secondary metabolites:A key driver of litter decomposition and soil nutrient cycling[J]. Journal of Ecology, 2016, 104:1527-1541 [25] HOU S L, HATTENSCHWILE S, YANG J J, et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland[J]. New Phytologist, 2021, 229:296-307 [26] WEI B, ZHANG D Y, KOU D, et al. Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs[J]. Functional Ecology, 2022, 36:998-1009 [27] 孟秋实, 秦倩倩, 刘艳红. 氮添加对东北红豆杉幼苗生长发育及生理特征的影响[J]. 生态学杂志, 2022, 41:2325-2334 [28] 陈克利. 氮添加对油松和辽东栎幼苗次生代谢过程的影响[D]. 杨凌:西北农林科技大学, 2019:21-34 [29] 高树琴, 段瑞, 王竑晟, 等. 北方农牧交错带在保障国家大粮食安全中发挥重要作用[J]. 中国科学院院刊, 2021, 36(6):643-651 [30] 刘平, 刘学军, 骆晓声, 等. 山西北部农村区域大气活性氮沉降特征[J]. 生态学报, 2016, 36(17):5353-5359 [31] CHEN X P, DIAO H J, WANG S P, et al. Plant community mediated methane uptake in response to increasing nitrogen addition level in a saline-alkaline grassland by rhizospheric effects[J]. Geoderma, 2023, 429, 116235 [32] 赵晓洁, 张雄伟, 薛江博, 等. 短期氮添加对山西右玉黄土高原盐渍化草地氨挥发的影响[J]. 草地学报, 2022, 30(4):992-999 [33] 郑慧, 薛江博, 郝杰, 等. 短期不同水平氮添加对华北盐渍化草地土壤磷组分的影响[J]. 草地学报, 2022, 30(3):712-720 [34] 董涵君, 王兴昌, 苑丹阳, 等. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46:722-734 [35] 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46:678-686 [36] XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist, 2008, 179:428-439 [37] YOU C M, WU F Z, YANG W Q, et al. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition:A global meta-analysis[J]. Environmental Pollution, 2018, 241:740-749 [38] LU X T, HAN X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China[J]. Plant and Soil, 2009, 327:481-491 [39] JIAN S Y, LI J W, CHEN J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization:A meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101:32-43 [40] WANG R Z, YANG J J, LIU H Y, et al. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands[J]. Ecology, 2022, 103, e3616 [41] SARDAN J, PENUEIA J. Potassium:a neglected nutrient in global change[J]. Global Ecology and Biogeography, 2015, 24:261-275 [42] HOU S L, FRESCHE G T, YANG J J, et al. Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits[J]. Biogeochemistry, 2018, 139:261-273 [43] GU H J, WANG H, LIU M, et al. Leaf N:P stoichiometry overrides the effect of individual nutrient content on insect herbivore population dynamics in a Tibetan alpine grassland[J]. Agriculture, Ecosystems and Environment, 2022, 336:108032 [44] LIU X, LU Y W, ZHANG Z H, et al. Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows[J]. Ecological Research, 2019, 35:162-169 [45] NEILSO E H, GOODGER J Q, WOODRO I E, et al. Plant chemical defense:At what cost?[J]. Trends in Plant Science, 2013, 18:250-258 [46] BARBEHEN R V, PETER C C. Tannins in plant-herbivore interactions[J]. Phytochemistry, 2011, 72:1551-1565 [47] CHAUVI K M, ASNER G P, MARTIN R E, et al. Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community[J]. Oecologia, 2018, 186:765-782 [48] AGRAWAL A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology[J]. Ecology, 2020, 101:e02924 |