[1] HADIDI M,ORELLANA PALACIOS J C,MCCLEMENTS D J,et al. Alfalfa as a sustainable source of plant-based food proteins[J]. Trends in Food Science & Technology,2023,135:202-214 [2] CHEN H T,ZENG Y,YANG Y Z,et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa[J]. Nature Communications,2020,11(1):2494 [3] 中华人民共和国农业农村部.全国苜蓿产业发展规划(2016-2020年):农牧发 [2016] 15号[EB/OL].https://www.moa.gov.cn/govpublic/XMYS/201701/t20170118,2017-1-18/2024-2-20 [4] 方明月,汪溢磐,赵奕,等. 低温干旱复合胁迫对8个紫花苜蓿品种形态和生理特征的影响[J]. 草地学报,2022,30(11):2967-2974 [5] 朱爱民,张玉霞,王显国,等. 沙地生境不同苜蓿品种形态特征对低温的响应及其与抗寒性关系[J]. 草地学报,2018,26(6):1400-1408 [6] 毕盛楠,温丽,候伟峰,等. 基于Citespace的苜蓿抗寒性研究进展[J]. 草学,2022(4):1-9 [7] SHI Y T,DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation [J]. Trends in Plant Science,2018,23(7):623-637 [8] CHEN X X,DING Y L,YANG Y Q,et al. Protein kinases in plant responses to drought,salt,and cold stress[J]. Journal of Integrative Plant Biology,2021,63(1):53-78 [9] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,167(2):313-324 [10] ZAN T,LI L Q,LI J T,et al. Genome-wide identification and characterization of late embryogenesis abundant protein-encoding gene family in wheat:Evolution and expression profiles during development and stress[J]. Gene,2020,736:144422 [11] LIU Y L,XIE L X,LIANG X L,et al. CpLEA5,the late embryogenesis abundant protein gene from Chimonanthus praecox,possesses low temperature and osmotic resistances in prokaryote and eukaryotes[J]. International Journal of Molecular Sciences,2015,16(11):26978-26990 [12] LIU Y,LIANG J N,SUN L P,et al. Group 3 LEA protein,ZmLEA3,is involved in protection from low temperature stress[J]. Frontiers in Plant Science,2016,7:1011 [13] HÁLA M, ŽÁRSKY‘ V. Protein prenylation in plant stress responses[J]. Molecules,2019,24(21):3906 [14] RONO J K,SUN D, YANG Z M. Metallochaperones:A critical regulator of metal homeostasis and beyond[J]. Gene,2022,822:146352 [15] ZHANG H,ZHANG X,LIU J,et al. Characterization of the heavy-metal-associated isoprenylated plant protein (HIPP) gene family from Triticeae species[J]. International Journal of Molecular Sciences,2020,21(17):6191 [16] BARTH O,VOGT S,UHLEMANN R,et al. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29[J]. Plant Molecular Biology,2009,69(1/2):213-226 [17] DE ABREU-NETO J B,TURCHETTO-ZOLET A C,DE OLIVEIRA L F V,et al. Heavy metal-associated isoprenylated plant protein (HIPP):characterization of a family of proteins exclusive to plants[J]. The FEBS Journal,2013,280(7):1604-1616 [18] SARKAR A K, SADHUKHAN S. Imperative role of trehalose metabolism and trehalose-6-phosphate signaling on salt stress responses in plants[J]. Physiologia Plantarum,2022,174(1):e13647 [19] XU Y C,WANG Y J,MATTSON N,et al. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family:evolution and differential expression during development and stress[J]. BMC Genomics,2017,18(1):926 [20] SONG J B,MAO H Y,CHENG J,et al. Identification of the trehalose-6-phosphate synthase gene family in Medicago truncatula and expression analysis under abiotic stresses[J]. Gene,2021,787:145641 [21] LIU X,FU L S,QIN P,et al. Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana[J]. Gene,2019,710:210-217 [22] AZEEZ A,ZHAO Y C,SINGH R K,et al. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy[J]. Nature Communications,2021,12(1):1123 [23] JANMOHAMMADI M,ZOLLA L, RINALDUCCI S. Low temperature tolerance in plants:Changes at the protein level[J]. Phytochemistry,2015,117:76-89 [24] WILLEMS A,HEYMAN J,EEKHOUT T,et al. The cyclin CYCA3;4 is a postprophase target of the APC/CCCS52A2 E3-ligase controlling formative cell divisions in arabidopsis[J]. The Plant Cell,2020,32(9):2979-2996 [25] WILLEMS A,LIANG Y K,HEYMAN J,et al. Plant lineage-specific PIKMIN1 drives APC/CCCS52A2 E3-ligase activity-dependent cell division[J]. Plant Physiology,2023,191(3):1574-1595 [26] WILLEMS A, DE VEYLDER L. The plant anaphase-promoting complex/cyclosome[J]. Annual Review of Cell and Developmental Biology,2022,38:25-48 [27] HE Z H,WEBSTER S, HE S Y. Growth-defense trade-offs in plants[J]. Current Biology,2022,32(12):R634-R639 [28] LI Y G,YANG Y H,HU Y L,et al. DELLA and EDS1 form a feedback regulatory module to fine-tune plant growth-defense tradeoff in Arabidopsis[J]. Molecular Plant,2019,12(11):1485-1498 [29] SUN X P,XIANG Y L,DOU N N,et al. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize[J]. Nature Biotechnology,2023,41(1):120-127 [30] YANG C Q,BAI Y C,HALITSCHKE R,et al. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression[J]. New Phytologist,2023,238(1):349-366 [31] LIU T T,WANG J,CHEN L,et al. ScAREB4 promotes potato constitutive and acclimated freezing tolerance associated with enhancing trehalose synthesis and oxidative stress tolerance[J]. Plant,Cell & Environment,2023,46(12):3839-3857 [32] SONG Q P,WANG X P,WU F C,et al. StATL2-like could affect growth and cold tolerance of plant by interacting with StCBFs[J]. Plant Cell Reports,2022,41(9):1827-1841 [33] DING Y L,SHI Y T, YANG S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant,2020,13(4):544-564 [34] JIANG B C,SHI Y T,PENG Y,et al. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis[J]. Molecular Plant,2020,13(6):894-906 [35] WANG W D,GAO T,CHEN J F,et al. The late embryogenesis abundant gene family in tea plant (Camellia sinensis):Genome-wide characterization and expression analysis in response to cold and dehydration stress[J]. Plant Physiology and Biochemistry,2019,135:277-286 [36] 李双铭,杨勇,胡龙兴,等.不同纬度来源结缕草叶片响应低温胁迫的转录组分析[J]. 草地学报,2023,31(10):2968-2984 [37] GENG W B,WANG Y N,ZHANG J,et al. Genome-wide identification and expression analyses of late embryogenesis abundant (LEA) gene family in tobacco (Nicotiana tabacum L.) reveal their function in abiotic stress responses[J]. Gene,2022,836:146665 [38] VISHAL B,KRISHNAMURTHY P,RAMAMOORTHY R,et al. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition[J]. New Phytologist,2019,221(3):1369-1386 [39] PAN T,GAO S,CUI X Y,et al. APC/C-CDC20 targets SCFFBL17 to activate replication stress responses in Arabidopsis[J]. The Plant Cell,2023,35(2):910-923 [40] LIMA M D,ELOY N B,PEGORARO C,et al. Genomic evolution and complexity of the Anaphase-promoting Complex (APC) in land plants[J]. BMC Plant Biology,2010,10:254 [41] GUO T Q,WEBER H,NIEMANN M C E,et al. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses[J]. Molecular Plant,2021,14(11):1918-1934 [42] ZHAO Y,CHAN Z L,GAO J H,et al. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(7):1949-1954 [43] 张昭,金琪凡,史彦欣,等. 不同品种紫花苜蓿种子萌发期耐低温性综合评价[J]. 草地学报,2023,31(10):3050-3057 |