[1] VOLAIRE F. A unified framework of plant adaptive strategies to drought:crossing scales and disciplines[J]. Global Change Biology, 2018, 24(7):2929-2938 [2] MISHRA A K, SINGH V P. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1-2):202-216 [3] IPCC. Climate change:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York:Cambdridge University Press, 2013:1031-1106 [4] BEN OTHMAN D, ABIDA H. Monitoring and mapping of drought in a semi-arid region:case of the Merguellil watershed, central Tunisia[J]. Environmental Monitoring and Assessment, 2022, 194(4):287 [5] ANANDHARUBAN P, ELANGO L. Spatio-temporal analysis of rainfall, meteorological drought and response from a water supply reservoir in the megacity of Chennai, India[J]. Journal of Earth System Science, 2021, 130(1):17 [6] NOORISAMELEH Z, GOUGH W A, MIRZA M Q. Persistence and spatial-temporal variability of drought severity in Iran[J]. Environmental Science and Pollution Research international, 2021, 28(35):48808-48822 [7] MATTHEW C, VAN DER, LINDEN A, HUSSAIN S, et al. Which way forward in the quest for drought tolerance in perennial ryegrass?[J]. Proceedings of the New Zealand Grassland Association, 2012, 74:195-200 [8] 马思煜. 云南省农业干旱事件时空动态变化与驱动机制研究[D]. 西安:西北大学, 2021:1-10 [9] 赵兰兰, 闻童, 赵兵, 等. 西南地区近50年干旱趋势及特征分析[J]. 水文, 2021, 41(6):91-95, 59 [10] KASIM W A, OSMAN M E, OMAR M N, et al. Control of drought stress in wheat using plant-growth-promoting bacteria[J]. Journal of Plant Growth Regulation, 2013, 32(1):122-130 [11] 于贵瑞, 王秋凤. 植物光合、蒸腾与水分利用的生理生态学[M]. 北京:科学出版社, 2010:38-43 [12] DANGWAL N, PATEL N R, KUMARI M, et al. Monitoring of water stress in wheat using multispectral indices derived from Landsat-TM[J]. Geocarto International, 2016, 31(6):682-693 [13] TERÁN-CHAVES C A, GARCÍA-PRATS A, POLO-MURCIA S M. Water stress thresholds and evaluation of coefficient ks for perennial ryegrass in tropical conditions[J]. Water, 2022, 14(11):1696 [14] ZUFFO A M, STEINER F, AGUILERA J G, et al. Selected indices to identify water-stress-tolerant tropical forage grasses[J]. Plants, 2022, 11(18):2444 [15] DOMINGUEZ D L E, CAVAGNARO J B, ROS J P, et al. Genetic diversity for drought tolerance in the native forage grass Trichloris crinita and possible Morpho-physiological mechanisms involved[J]. Frontiers in Plant Science, 2023, 14:1235923 [16] TALEB M H, MAJIDI M M, PIRNAJMEDIN F, et al. Plant functional trait responses to cope with drought in seven cool-season grasses[J]. Scientific Reports, 2023, 13(1):5285 [17] SALSINHA Y C F, INDRADEWA D, PURWESTRI Y A, et al. Selection of drought-tolerant local rice cultivars from East Nusa Tenggara Indonesia during vegetative stage[J]. Biodiversitas Journal of Biological Diversity, 2019, 21(1):170-178 [18] SALSINHA Y C F, Maryani, INDRADEWA D, et al. Leaf physiological and anatomical characters contribute to drought tolerance of Nusa Tenggara Timur local rice cultivars[J]. Journal of Crop Science and Biotechnology, 2021, 24(3):337-348 [19] HEIN J A, SHERRARD M E, MANFREDI K P, et al. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress[J]. BMC Plant Biology, 2016, 16(1):248 [20] OLSZEWSKA M. Effects of cultivar, nitrogen rate and biostimulant application on the chemical composition of perennial ryegrass (Lolium perenne L.) biomass[J]. Agronomy, 2022, 12(4):826 [21] NEAL J S, MURPHY S R, HARDEN S, et al. Differences in soil water content between perennial and annual forages and crops grown under deficit irrigation and used by the dairy industry[J]. Field Crops Research, 2012, 137:148-162 [22] ORDÓÑEZ I, LÓPEZ I F, KEMP P D, et al. Effect of pasture improvement managements on physical properties and water content dynamics of a volcanic ash soil in southern Chile[J]. Soil and Tillage Research, 2018, 178:55-64 [23] LÓPEZ I F, KEMP P D, DÖRNER J, et al. Competitive strategies and growth of neighbouring Bromus valdivianus phil. and Lolium perenne L. plants under water restriction[J]. Journal of Agronomy and Crop Science, 2013, 199(6):449-459 [24] ORDÓÑEZ I P, LÓPEZ I F, KEMP P D, et al. Response of Bromus valdivianus (pasture brome) growth and physiology to defoliation frequency based on leaf stage development[J]. Agronomy, 2021, 11(10):2058 [25] DESCALZI C, BALOCCHI O, LÓPEZ I, et al. Different soil structure and water conditions affect the growing response of Lolium perenne L. and Bromus valdivianus Phil. growing alone or in mixture[J]. Journal of Soil Science and Plant Nutrition, 2018, 18(3):617-635 [26] ORDÓN'EZ I P, LÓPEZ I F, KEMP P D, et al. Pasture brome (Bromus valdivianus) leaf growth physiology:a six leaf grass species[C]// 47th Agronomy Society Conference. Whanganui:New Zealand, 2017:13-22 [27] GARCÍA-FAVRE J, ZHANG Y M, LÓPEZ I F, et al. Decreasing defoliation frequency enhances Bromus valdivianus phil. growth under low soil water levels and interspecific competition[J]. Agronomy, 2021, 11(17):1333 [28] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Reviews of Plant Physiology, 1982, 33:317-345 [29] 张熙, 张晋昕. 多个样本均数间的两两比较[J]. 循证医学, 2008, 8(3):167-171, 176 [30] 岳喜元, 左小安, 庾强, 等. 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis) 叶性状的影响[J]. 中国沙漠, 2018, 38(5):1009-1016 [31] 张一龙, 喻启坤, 李雯, 等. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3):163-178 [32] 赵小强, 陆晏天, 白明兴, 等. 不同株型玉米基因型对干旱胁迫的响应分析[J]. 草业学报, 2020, 29(2):149-162 [33] 彭云玲, 赵小强, 任续伟, 等. 干旱胁迫对不同株型玉米大喇叭口期生长的影响[J]. 中国沙漠, 2013, 33(4):1064-1070 [34] 张咏梅, 胡海英, 白小明, 等. 多年生黑麦草、雀麦根系形态和生长对土壤干旱的适应性[J]. 中国生态农业学报(中英文), 2022, 30(11):1784-1794 [35] 葛体达, 隋方功, 李金政, 等. 干旱对夏玉米根冠生长的影响[J]. 中国农学通报, 2005, 21(1):103-109 [36] BRADBURY M. The effect of water stress on growth and dry matter distribution in juvenile Sesbania sesban and Acacia nilotica[J]. Journal of Arid Environments, 1990, 18(3):325-333 [37] WAN J X, GRIFFITHS R, YING J F, et al. Development of drought-tolerant canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses[J]. Crop Science, 2009, 49(5):1539-1554 [38] ROBERTSON B C, HE T H, LI C D. The genetic control of stomatal development in barley:new solutions for enhanced water use efficiency in drought-prone environments[J]. Agronomy, 2021, 11(8):1670 [39] MASTALERCZUK G, BORAWSKA-JARMUŁOWICZ B, DARKALT A. Changes in the physiological and morphometric characteristics and biomass distribution of forage grasses growing under conditions of drought and silicon application[J]. Plants, 2022, 12(1):16 [40] COWAN I R. Stomatal behaviour and environment[J]. Advances in Botanical Research, 1978, 4:117-228 [41] COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31:471-505 [42] RODRIGUEZ-ITURBE I, PORPORATE D E A. Modeling photosynthesis, transpiration, and soil water balance:hourly dynamics during interstorm periods[J]. Journal of Hydrometeorology, 2004, 5:546-558 [43] 李彦彬, 朱亚南, 李道西, 等. 阶段干旱及复水对小麦生长发育、光合和产量的影响[J]. 灌溉排水学报, 2018, 37(8):76-82 [44] FARIASZEWSKA A, APER J, VAN HUYLENBROECK J, et al. Physiological and biochemical responses of forage grass varieties to mild drought stress under field conditions[J]. International Journal of Plant Production, 2020, 14(2):335-353 [45] NEAL J S, FULKERSON W J, SUTTON B G. Differences in water-use efficiency among perennial forages used by the dairy industry under optimum and deficit irrigation[J]. Irrigation Science, 2011, 29(3):213-232 [46] SMEAL D, GREGORY E J, ARNOLD R N. Interseasonal variability in the water use-production function of alfalfa[J]. Journal of Production Agriculture, 1992, 5(4):576-580 [47] 胡海英. 荒漠草原优势植物水分利用策略与干旱适应机制[M]. 银川:宁夏人民出版社, 2021:8 [48] MASTALERCZUK G, BORAWSKA-JARMUŁOWICZ B. Physiological and morphometric response of forage grass species and their biomass distribution depending on the term and frequency of water deficiency[J]. Agronomy, 2021, 11(12):2471 [49] BOZKURT ÇOLAK Y, YAZAR A, ALGHORY A, et al. Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems[J]. Irrigation Science, 2021, 39(1):81-100 [50] ALGHORY A, YAZAR A. Evaluation of crop water stress index and leaf water potential for deficit irrigation management of sprinkler-irrigated wheat[J]. Irrigation Science, 2019, 37(1):61-77 [51] WIDIYONO W, NUGROHO S, RACHMAT A, et al. Drought tolerant screening of 20 Indonesian Sorghum genotypes through leaf water potential measurements under water stress[J]. Earth and Environmental Science, 2020, 439(1):012033 [52] TARDIEU F, DAVIES W J. Stomatal response to abscisic acid is a function of current plant water status[J]. Plant Physiology, 1992, 98(2):540-545 [53] POCKMAN W T, SPERRY J S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation[J]. American Journal of Botany, 2000, 87(9):1287-1299 [54] HÖLTTÄ T, MENCUCCINI M, NIKINMAA E. Linking phloem function to structure:analysis with a coupled xylem-phloem transport model[J]. Journal of Theoretical Biology, 2009, 259(2):325-337 [55] SPERRY J S, HACKE U G, OREN R, et al. Water deficits and hydraulic limits to leaf water supply[J]. Plant, Cell & Environment, 2002, 25(2):251-263 [56] GUO J S, OGLE K. Antecedent soil water content and vapor pressure deficit interactively control water potential in Larrea tridentata[J]. New Phytologist, 2019, 221(1):218-232 |