[1] WAN W F,LI Y J, LI H G. Yield and Quality of Alfalfa (Medicago Sativa L.) in Response to Fertilizer Application in China:A Meta-Analysis[J]. Frontiers in Plant Science,2022,13:1051725 [2] 张红梅,刘铁军,连翊仙,等. 紫花苜蓿裹包青贮饲料发展前景分析[J]. 粮食与饲料工业,2023,2:51-53 [3] 吴永敷,李秀娴,赵秀华. 蓟马对苜蓿的危害[J]. 中国草原,19882:25-27 [4] STEENBERGEN M,ABD-EL-HALIENALIEM A,BLEEKER P,et al. Thrips Advisor:Exploiting Thrips-Induced Defences to Combat Pests on Crops[J]. Journal of Experimental Botany,2018,69(8):1837-1848 [5] 武杰瑞,刘秉毅,特木尔布和,等. 蓟马取食对苜蓿氨基酸组成及含量的影响[J]. 草地学报,2022,30(1):62-68 [6] 温雅洁,周生英,方强恩,等. 蓟马为害对苜蓿叶茎显微结构的影响[J]. 草地学报,2021,29(12):2703-2710 [7] 张奔,周敏强,王娟,等. 我国苜蓿害虫种类及研究现状[J]. 草业科学,2016,4:785-812 [8] LOPEZ-REYES K,ARMSTRONG K,TOL R V,et al. Colour Vision in Thrips (Thysanoptera)[J]. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences,2022,377(1862):20210282 [9] 郁伟杰,苗一凡,穆海婷,等. 转录组学解析紫花苜蓿雄性不育系花粉败育机制[J]. 草地学报,2023,31(6):1702-1713 [10] KARST S,ZIELS R,KIRKEGAARD R,et al. High-Accuracy Long-Read Amplicon Sequences Using Unique Molecular Identifiers with Nanopore or Pacbio Sequencing[J]. Nature Methods,2021,18(2):165-169 [11] FANG Z H,LIU J N,WU X M,et al. Full-Length Transcriptome of in Medicago Sativa L. Roots in Response to Drought Stress[J]. Frontiers in Genetics,2022,13:1086356 [12] CUI G W,CHAI H,YIN H,et al. Full-Length Transcriptome Sequencing Reveals the Low-Temperature-Tolerance Mechanism of Medicago Falcata Roots[J]. BMC Plant Biology,2019,19(1):575 [13] LUO D,ZHOU Q,WU Y G,et al. Full-Length Transcript Sequencing and Comparative Transcriptomic Analysis to Evaluate the Contribution of Osmotic and Ionic Stress Components Towards Salinity Tolerance in the Roots of Cultivated Alfalfa (Medicago Sativa L.)[J]. BMC Plant Biology,2019,19(1):32 [14] 邵露营. 地黄全长转录组、RgURT基因编辑和代谢组分析[D].新乡:河南师范大学,2023:16-20 [15] 田韦韦,严志祥,王成,等. 基于全长转录组测序的多花黄精WRKY转录因子家族分析[J]. 中国中药杂志,2023,48(4):939-950 [16] YAN C C,ZHANG N,WANG Q Q,et al. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Potato Seedlings Responding to Low-Temperature[J]. BMC Plant Biology,2022,22(1):125 [17] ZHANG C,REN H,YAO X,et al. Full-Length Transcriptome Analysis of Pecan (Carya Illinoinensis) Kernels[J]. G3 (Bethesda,Md.),2021,11(8):182 [18] CHEN M,ZHU F,GAO B,et al. Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation[J]. Plant Physiology,2020,182(3):1510-1526 [19] 张俊超. 基于转录组测序挖掘老芒麦落粒候选基因及其功能分析[D].兰州:兰州大学,2021:58-60 [20] AL-KHAYRI J,RASHMI R,TOPPO V,et al. Plant Secondary Metabolites:The Weapons for Biotic Stress Management[J]. Metabolites,2023,13(6):716 [21] 王圭垚. 金露梅转录组分析及黄酮类化合物合成关键基因的克隆[D]. 西宁:青海师范大学,2023 [22] MORIMOTO M,KUMEDA S, KOMIA K. Insect Antifeedant Flavonoids from Gnaphalium Affine D. Don[J]. Journal of agricultural and food chemistry,2000,48(5):1888-1891 [23] 吴芳,师尚礼,康文娟,等. 蓟马取食诱导对紫花苜蓿次生代谢物含量及防御酶活性的影响[J]草原与草坪,2022,6:21-27 [24] ZHANG Z Q,CHEN Q,TAN Y,et al. Combined Transcriptome and Metabolome Analysis of Alfalfa Response to Thrips Infection[J]. Genes,2021,12(12):1967 [25] 陈崎,姜晓红,谭瑶,等. 蓟马取食诱导的苜蓿代谢物变化[J]. 江苏农业科学,2023,3:126-132 [26] ADNAN M,MORTON G, HADI S. Analysis of Rpos and Bola Gene Expression under Various Stress-Induced Environments in Planktonic and Biofilm Phase Using 2(-Δδct) Method[J]. Molecular and Cellular Biochemistry,2011,357(1-2):275-282 [27] 冯佳武. 基于三代转录组测序的植物全长转录本数据库构建及水稻杂种数据分型[D]. 武汉:华中农业大学,2020:13-16 [28] XU J Y,SHAN T Y,ZHANG J J,et al. Full-Length Transcriptome Analysis Provides Insights into Flavonoid Biosynthesis in Ranunculus Japonicus[J]. Physiologia Plantarum,2023,null:e13965 [29] YAN C C,ZHANG N,WANGQ Q,et al. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Potato Seedlings Responding to Low-Temperature[J]. BMC Plant Biology,2022,22(1):125 [30] ZHENG L,ZHAO Y W,GAN Y F,et al. Full-Length Transcriptome Sequencing Reveals the Impact of Cold Stress on Alternative Splicing in Quinoa[J]. International Journal of Molecular Sciences,2022,23(10):2724 [31] 崔艺凡,赵阳,吴健,等. 文冠果全长转录组测序及分析[J]. 分子植物育种,2023,4:1117-1127 [32] SHI Z Y,ZHAO W Q,LI Z G,et al. Development and Validation of Ssr Markers Related to Flower Color Based on Full-Length Transcriptome Sequencing in Chrysanthemum[J]. Scientific Reports,2022,12(1):22310 [33] SUN S J,LI Y,CHU L H,et al. Full-Length Sequencing of Ginkgo Transcriptomes for an in-Depth Understanding of Flavonoid and Terpenoid Trilactone Biosynthesis[J]. Gene,2020,758:144961 [34] YE J B,CHENG S Y,ZHOU X,et al. A Global Survey of Full-Length Transcriptome of Ginkgo Biloba Reveals Transcript Variants Involved in Flavonoid Biosynthesis[J]. Industrial Crops and Products,2019,139:111547 [35] 张丽玲. 基于WGCNA对谷子类黄酮生物合成相关基因的研究[D]. 太原:山西农业大学,2021:10-21 [36] 孙诗瑶,王晓丽,曹子林,等. 千针万线草根转录组测序及黄酮类化合物合成相关基因挖掘[J].福建农业学报,2022,08:1008-1015 [37] 戴明洁. 桑树类黄酮合成途径关键基因CHIL和F3H的分子克隆及功能分析[D]. 镇江:江苏科技大学,2022:22-23 [38] 刘瑞,赵浪,冶贵生,等.中国沙棘HrANR基因及类黄酮累积与抗旱的关系[J/OL]. http://kns.cnki.net/kcms/detail/45.1134.Q.20230915.0758.002.html, 2023.9.15/2024-04-17 |