[1] ZHOU G,ZHOU X,HE Y,et al. Grazing intensity significantly affects belowground carbon and cycling in grassland ecosystems:a meta-analysis[J]. Global Change Biology,2017,23(3):1167-1179 [2] 傅伯杰,欧阳志云,施鹏,等. 青藏高原生态安全屏障状况与保护对策[J]. 中国科学院院刊,2021,36(11):1298-1306 [3] 童永尚,张春平,董全民,等. 不同形态氮添加对多年生高寒栽培草地土壤理化性质和微生物群落结构的影响[J/OL]. https://doi.org/10.13227/j.hjkx.202307216,2023-09-25/2023-11-18 [4] 尹亚丽,王玉琴,李世雄,等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响[J].应用生态学报,2019,30(1):127-136 [5] 李娜,赵娜,王娅琳,等. 高寒人工草地不同植被类型下表层土壤有机碳和无机碳变化及土壤理化因子[J]. 草地学报,2023,31(8):2361-2368 [6] MU Y,LIU Y,TIAN F P,et al. Influence of artificial grassland restoration on soil carbon pool in an arid mining land[J]. Journal of Soil Science and Plant Nutrition,2016(16):890-900 [7] HU P L,LIU S J,YE Y Y,et al. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration[J]. Land Degradation and Development,2018,29(3):387-397 [8] SINSABAUGH R L. Phenol oxidase,peroxidase and organic matter dynamics of soil[J]. Soil Biology and Biochemistry,2010,42(3):391-404 [9] 曲成闯,陈效民,张志龙,等. 施用生物有机肥对黄瓜连作土壤有机碳库和酶活性的持续影响[J]. 应用生态学报,2019,30(9):3147-3154 [10] HE F,WANG H,CHEN Q,et al. Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure[J]. Journal of Soil Contamination,2015,24(3):250-261 [11] 肖颖,吉使阿微,赵文学,等. 青藏高原东缘不同人工草地土壤养分、酶活性及微生物生物量特征[J]. 中国草地学报,2022,44(9):90-99 [12] 马琦. 利用方式、种植模式和施氮对黄土高原多年生牧草产量和土壤性质的影响[D]. 兰州:兰州大学,2023:2-3 [13] 王根绪,程国栋. 江河源区的草地资源特征与草地生态变化[J]. 中国沙漠,2001(2):101-107 [14] 张振超. 青藏高原典型高寒草地地上-地下的退化过程和禁牧恢复效果研究[D]. 北京:北京林业大学,2020:7-8 [15] 李彩弟,张春平,俞旸,等. 种植方式对青海湖流域人工草地植被和土壤养分特征的影响[J]. 草地学报,2023,31(2):471-478 [16] 罗澜,席源,华仲臣,等. 河南省典型土壤类型及土地利用方式对土壤活性有机质及碳库管理指数的影响[J]. 中国水土保持科学(中英文),2023,21(5):29-37 [17] 汪鹏斌. 保护播种对高寒区不同利用型混播草地草产量和品质的影响[D]. 兰州:甘肃农业大学,2021:7 [18] JONES D L,WILLETT V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry,2006,38(5):991-999 [19] CAMBARDELLA C A,ELLIOTT E T. Particulate soil organic matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777-787 [20] 黄卫丽,海龙,吴振廷,等. 毛乌素沙地杨柴灌木林恢复演替过程中土壤活性有机碳组分变化特征[J]. 生态学报,2023,43(9):3798-3806 [21] 关松荫. 土壤酶及其研究法[M]. 北京:中国农业出版社,1986:256-312 [22] 陈璟,杨宁.衡阳紫色土丘陵坡地植被恢复对土壤活性有机碳库的影响[J]. 热带亚热带植物学报,2016,24(5):568-576 [23] 巩建锋. 不同土地利用下表层土壤有机碳含量及其组分特征—以陇东、陇中和甘南为例[D]. 兰州:兰州大学,2011:37-39 [24] 刘和,王晓丽,王彦龙,等. 三江源区建植“黑土山”人工草地对土壤性质的影响[J]. 草地学报,2023,31(8):2527-2536 [25] 李晓燕,李永慧,秦文萍,等. 人工草地建植对三江源区退化高寒草甸土壤有机碳组分的影响[J]. 生态学杂志,2024,43(1):50-56 [26] 杨满元,杨盛海,徐一斐,等. 衡阳紫色土丘陵坡地土壤活性有机碳及理化性状对不同植被恢复模式的响应[J/OL]. http://kns.cnki.net/kcms/detail/62.1055.S.20231205.1659.100.html,2023-12-16/2023-11-18 [27] LI S,ZHANG S,PU Y,et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research,2016,107(1):162-169 [28] 吴慧,赵志忠,吴丹. 海南岛西部原始林土壤有机碳分布特征及其影响因素[J]. 东北林业大学学报,2023,51(9):107-111 [29] VERMA B C,DATTA R P,RARRAN R K,et al. Monitoring changes in soil organic carbon pools,nitrogen,phosphorus,and sulfur under different agricultural management practices in the tropics[J]. Environmental Monitoring & Assessment,2010,171(1-4):579-593 [30] 蒋婧,王沫竹,宋明华,等. 牧草种类与耕作时间对拉萨牧草种植地土壤不同组分有机碳的影响[J]. 生态学报,2015,35(2):424-433 [31] SAINEPO B M,GACHENE C K,KARUMA A. Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo Catchment,Narok County,Kenya[J]. Carbon Balance and Management,2018,13(1):4 [32] 朱梦圆,宋艳宇,高思齐,等. 三江平原不同植被类型湿地土壤微生物碳源代谢多样性特征[J]. 生态环境学报,2022,31(12):2310-2319 [33] PANG D,CUI M,LIU Y,et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China[J]. Ecological Engineering,2019,138:391-402 [34] 王斐,马锐豪,夏开,等. 森林转换对土壤活性有机碳组分的影响[J]. 水土保持研究,2023,30(1):233-240 [35] 蔡华,舒英格,王昌敏,等. 喀斯特地区植被恢复下土壤活性有机碳与碳库管理指数的演变特征[J]. 环境材料,2023,44(12):6880-6893 [36] 蒋如,宁诗琪,隋宗明,等.长期轮作施肥处理对植烟土壤有机碳组分和酶活性的影响[J/OL]. http://kns.cnki.net/kcms/detail/32.1118.P.20231211.0925.002.html,2023-12-12/2023-12-20 [37] 罗娜娜,盛茂银,王霖娇,等. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报,2023,47(6):867-881 [38] ZHOU Z,FAN S,LU S,et al. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan,southwest China[J]. Journal of Forestry Research,2020,31(5):474-482 [39] 张凤华,梁静,庞玮. 不同恢复模式对新疆弃耕地土壤理化性质和生物学特性的影响[J]. 水土保持学报,2013,27(5):169-172 [40] 韩璐. 外来入侵植物野燕麦根系土壤微生物多样性分析[J]. 分子植物育种,2022,20(24):8347-8352 [41] 卢越,张健琳,杨兰芳. 不同作物生长和施肥对土壤酶活性的影响[J]. 环境生态学,2019,1(6):81-85,90 [42] 杨德任,朱原立,李书玲,等. 酚酸对桉树纯林和混交林土壤养分有效性的影响[J]. 森林与环境学报,2023,43(6):579-587 [43] 刘强,李苗苗,何亚兰,等. 黄土丘陵区不同施肥措施对土壤肥力及土壤酶活性的影响[J]. 北方园艺,2023(21):78-85 [44] 王鹏,郑学博,梁洪波,等. 不同施肥模式对植烟棕壤活性有机碳组分和酶活性的影响[J]. 华北农学报,2021,36(1):187-196 [45] 孟婷婷,杨亮彦,孔辉,等. 生物有机肥施用量对土壤有机碳组分及酶活性的影响[J].北方园艺,2022(17):86-91 [46] SONG Y,SONG C,YANG G,et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang plain in northeast china[J]. Environmental Management,2012,50(3):418-426 [47] YU H Y,DING W X,LUO J F,et al. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam[J]. Soil Use and Management,2012,28(3):347-360 [48] 罗明霞. 川西亚高山灌丛土壤微生物群落与土壤酶活性特征研究[D]. 成都:四川农业大学,2022:59-60 [49] 王子寅,唐万鹏,刘秉儒,等. 植被毯覆盖对旱区露天煤矿土壤生态化学计量及酶活性的影响[J]. 农业工程学报,2022,38(15):124-132 [50] 侯雪莹,韩晓增,王树起,等. 土地利用方式对黑土酶活性的影响[J]. 中国生态农业学报,2009,17(2):215-219 [51] 包建平,袁根生,董方圆,等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报,2020,57(3):721-729 [52] 郝海波,许文霞,侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响[J]. 植物营养与肥料学报,2023,29(5):860-875 [53] 王一诺,徐志伟,王升忠. 白江河天然和排水泥炭沼泽土壤活性有机碳组分含量及其影响因素研究[J]. 湿地科学,2021,19(6):691-701 |