[1] SARKODIE S A,OWUSU P A,LEIRVIK T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions[J]. Environmental Research Letters,2020,15(3):034049 [2] WANG Z X,XING A J,SHEN H H. Effects of nitrogen addition on the combined global warming potential of three major soil greenhouse gases: A global meta-analysis[J]. Environmental Pollution,2023,334:121848 [3] MONASTERSKY R. Global carbon dioxide levels near worrisome milestone: concentrations of greenhouse gas will soon surpass 400 parts per million at sentinel spot[J]. Nature,2013,497(7447):13-14 [4] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报,2020,28:5-7 [5] 赵震宇,姚舜,杨朔鹏,等. “双碳”目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学,2023,44(2):1128-1138 [6] 贾天朝,胡西武. 基于PLUS-InVEST-Geodector模型的三江源国家公园碳储量时空变化及驱动力[J]. 环境科学,2024,45(10):5931-5942 [7] YANG J J,LI A Y,YANG Y F,et al. Soil organic carbon stability under natural and anthropogenic-induced perturbations[J]. Earth-Science Reviews,2020,205:103199 [8] 刘魏魏,王效科,逯非,等. 全球森林生态系统碳储量、固碳能力估算及其区域特征[J]. 应用生态学报,2015,26(9):2881-2890 [9] 徐英明,虞依娜,李鑫,等. 南亚热带不同造林模式碳汇林土壤碳积累与碳汇功能[J]. 生态学报,2019,39(1):355-362 [10] LAL R. Carbon management in agricultural soils[J]. Mitigation and Adaptation Strategies for Global Change,2007,12(2):303-322 [11] 周莉,李保国,周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展,2005,20(1):99-105 [12] 陈林,曹萌豪,宋乃平,等. 中国荒漠草原的研究态势与热点分析——基于文献计量研究[J]. 生态学报,2021,41(24):9990-10000 [13] 李进,陈仕勇,李世丹,等. 基于文献计量分析的披碱草属植物研究进展[J]. 草业科学,2021,38(9):1793-1804 [14] 余健,房莉,卞正富,等. 土壤碳库构成研究进展[J]. 生态学报,2014,34(17):4829-4838 [15] ABRAMOFF R Z,GUENET B,ZHANG H C,et al. Improved global-scale predictions of soil carbon stocks with Millennial Version 2[J]. Soil Biology and Biochemistry,2022,164:108466 [16] FAN X L,GAO D C,ZHAO C H,et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool[J]. The ISME Journal,2021,15(8):2248-2263 [17] 王诗旖,姚惠婷,黄欣,等. 茶园土壤有机碳库组分、影响因素及其稳定性研究进展[J].环境科学研究,2024,37(5):1104-1115 [18] 杨艳华,苏瑶,何振超,等. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J]. 应用生态学报,2019,30(2):668-676 [19] ZHENG M H,ZHANG T,LUO Y Q,et al. Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition[J]. Nature Geoscience,2022,15(12):1002-1010 [20] MATTILA T J,HAGELBERG E,SÖDERLUND S,et al. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans[J]. Soil and Tillage Research,2022,215:105204 [21] SHEN Z T,TIAN Y,YAO Y X,et al. Ecological restoration research progress and prospects: A bibliometric analysis[J]. Ecological Indicators,2023,155:110968 [22] CHEN C M,HU Z G,LIU S B,et al. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace[J]. Expert Opinion on Biological Therapy,2012,12(5):593-608 [23] 管秀静,苏燕,阿娜尔,等.农田土壤重金属污染修复研究进展-基于CiteSpace知识图谱分析[J].土壤通报,2024,55(2):573-583 [24] 高云峰,徐友宁,祝雅轩,等. 矿山生态环境修复研究热点与前沿分析——基于VOSviewer和CiteSpace的大数据可视化研究[J]. 地质通报,2018,37(12):2144-2153 [25] 串丽敏,郑怀国,赵同科,等. 基于Web of Science数据库的土壤污染修复领域发展态势分析[J]. 农业环境科学学报,2016,35(1):12-20 [26] XU Z,LI X,ZHANG L. A bibliometric analysis of research trends and hotspots in alpine grassland degradation on the Qinghai-Tibet Plateau[J]. PeerJ,2023,11:e16210 [27] 曲孝云,侯东杰,陆帅志,等. 基于WOS和CNKI数据库的青藏高原草地研究文献计量学分析[J]. 生态学报,2023,43(19):1-12 [28] 任睿,高雯芳,李敏,等. 基于VOSviewer和CiteSpace的昆虫肠道微生物领域可视化分析[J]. 微生物学通报, 2023,50(11):5219-5234 [29] HE Y Q,LAN Y H,ZHANG H,et al. Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis[J]. Ecological Indicators,2022,141(4):109145 [30] HUANG X F,FENG J X,DONG J D,et al. Spartina alterniflora invasion and mangrove restoration alter diversity and composition of sediment diazotrophic community[J]. Applied Soil Ecology,2022,177:104519 [31] 张增可,王齐,吴雅华,等. 基于CiteSpace植物功能性状的研究进展[J]. 生态学报,2020,40(3):1101-1112 [32] ARMSTRONG MCKAY D I,STAAL A,ABRAMS J F,et al. Exceeding 1.5℃ global warming could trigger multiple climate tipping points[J]. Science,2022,377(6611):7950 [33] ANGST G,MUELLER K E,CASTELLANO M J,et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key[J]. Nature Communications,2023,14(1):2967 [34] MINASNY B,MALONE B P,MCBRATNEY A B,et al. Soil carbon 4 per mille[J]. Geoderma,2017,292:59-86 [35] LAL R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J]. Global Change Biology,2018,24(8):3285-3301 [36] SCHMIDT M W I,TORN M S,ABIVEN S,et al. Persistence of soil organic matter as an ecosystem property[J]. Nature,2011,478(7367):49-56 [37] 史佳梅,许冬梅,刘万龙,等. 沙化草地土壤有机碳及碳库管理指数的分异特征研究[J]. 草地学报,2022,30(7):1630-1640 [38] 李媛媛,刘兴婕,陈月琴,等. 氮沉降背景下土壤动物马陆对温室气体排放的调节作用[EB/OL].http://link.cnki.net/urlid/21.1148.Q.20240315.1115.011,2024-03-15/2024-04-19 [39] 宋成功,王克勤,宋娅丽,等. 氮沉降对滇中高原地带性森林土壤呼吸的影响[EB/OL].https://link.cnki.net/urild/32.1161.S.20240313.1334.002,2024-03-14/2024-04-19 [40] WIEDER W R,BONAN G B,ALLISON S D. Global soil carbon projections are improved by modelling microbial processes[J]. Nature Climate Change,2013,3(10):909-912 [41] 马宁,赵允格,马昕昕,等.黄土丘陵区退耕草地土壤碳库管理指数对放牧的响应[J]. 草地学报,2022,30(5):1043-1053 [42] LIANG C,BALSER T C. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool[J]. Nature Communications,2012,3(1):1222 [43] DENG F B,LIANG C. Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil[J]. Soil Biology and Biochemistry,2022,165:108486 |