NPP Spatio-Temporal Evolution and Its Influencing Factors in the Three-River Headwaters from 2000 to 2023 Based on MODIS NPP
LI Wen-jing1, LI Wen-long2, XIONG You-cai3, LUO Qiong4, WANG Wen-Ying1,5
1. College of Geography Science, Qinghai Normal University, Xining, Qinghai Province 810008, China; 2. College of Grassland Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; 3. College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, China; 4. College of Life Science, Qinghai Normal University, Xining, Qinghai Province 810008, China; 5. Academy of Plateau Science and Sustainability People's Government of Qinghai Province & Beijing Normal University, Xining, Qinghai Province 810008, China
LI Wen-jing, LI Wen-long, XIONG You-cai, LUO Qiong, WANG Wen-Ying. NPP Spatio-Temporal Evolution and Its Influencing Factors in the Three-River Headwaters from 2000 to 2023 Based on MODIS NPP[J]. Acta Agrestia Sinica, 2025, 33(9): 3003-3013.
[1] 黄小涛, 姚步青, 马真, 等. 青海高原草地净初级生产力和降水利用效率时空特征[J]. 草地学报, 2021, 29(S1): 19-26 [2] FALKNER R. The Paris Agreement and the new logic of international climate politics[J]. International Affairs, 2016, 92(5): 1107-1125 [3] HAO L, WANG S, CUI X, et al. Spatiotemporal dynamics of vegetation net primary productivity and its response to climate change in Inner Mongolia from 2002 to 2019[J]. Sustainability, 2021, 13(23): 13310 [4] SONG Y, LIANG T, ZHANG L, et al. Spatio-temporal changes and contribution of human and meteorological factors to grassland net primary productivity in the Three-Rivers Headwater Region from 2000 to 2019[J]. Atmosphere, 2023, 14(2): 278 [5] 常屹冉, 张弛, 魏嘉诚, 等. 气候变化和人类活动对内蒙古植被净初级生产力的影响[J]. 草地学报, 2023, 31(11): 3444-3452 [6] 冯险峰, 孙庆龄, 林斌. 区域及全球尺度的NPP过程模型和NPP对全球变化的响应[J]. 生态环境学报, 2014, 23(3): 496-503 [7] MA B, JING J, LIU B, et al. Assessing the contribution of human activities and climate change to the dynamics of NPP in ecologically fragile regions[J]. Global Ecology and Conservation, 2023, 42: e02393 [8] 朱文泉,陈云浩,徐丹,李京. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 2005(3): 296-300 [9] 吕鑫, 王卷乐, 康海军, 等. 基于MODIS NPP的2006—2015年三江源区产草量时空变化研究[J]. 自然资源学报, 2017, 32(11): 1857-1868 [10] GUO B, ZANG W, HAN B, et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015[J]. Journal of Arid Land, 2020, 12(1): 1-17 [11] XIA L, WANG F, MU X, et al. Water use efficiency of net primary production in global terrestrial ecosystems[J]. Journal of Earth System Science, 2015, 124(5): 921-931 [12] 陈美祺, 邵全琴, 宁佳, 等. 青藏高原不同生态地理区生态恢复状况分析[J]. 草地学报, 2023, 31(4): 1211-1225 [13] ZHANG F, HU X, ZHANG J, et al. Change in alpine grassland npp in response to climate variation and human activities in the Yellow River Source Zone from 2000 to 2020[J]. Sustainability, 2022, 14(14): 8790 [14] ZHANG X, NING J. Patterns, trends, and causes of vegetation change in the Three Rivers Headwaters Region[J]. Land, 2023, 12(6): 1127 [15] FENG X, ZHAO Z, MA T, et al. A study of the effects of climate change and human activities on NPP of marsh wetland vegetation in the Yellow River source region between 2000 and 2020[J]. Frontiers in Ecology and Evolution, 2023, 11: 1123645 [16] 左婵, 王军邦, 张秀娟, 等. 三江源国家公园植被净初级生产力变化趋势及影响因素[J]. 生态学报, 2022, 42(14): 5559-5573 [17] WANG Z, DONG C, DAI L, et al. Spatiotemporal evolution and attribution analysis of grassland NPP in the Yellow River source region, China[J]. Ecological Informatics, 2023, 76: 102135 [18] 钱前, 张秀娟, 王军邦, 等. 2005-2017年青海三江源区草地家畜承载力时空格局研究[J]. 草地学报, 2021, 29(6): 1311-1317 [19] ZHU P, LIU G, HE J. Spatio-temporal variation and impacting factors of NPP from 2001 to 2020 in Sanjiangyuan region, China: A deep neural network-based quantitative estimation approach[J]. Ecological Informatics, 2023, 78: 102345 [20] 朱美婷, 张美玲, 贾晓楠, 等. 基于Daycent模型的三江源地区草地NPP估算及其对气候变化的响应[J]. 草原与草坪, 2023, 43(2): 13-21 [21] 曾纳, 任小丽, 何洪林, 等. 三江源国家公园草地地上生物量时空动态及其气候影响[J]. 生态学报, 2023, 43(3): 1175-1184 [22] 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158-1167 [23] 王志鹏, 石长春, 马雅莉, 等. 毛乌素沙地植被净初级生产力时空变化及其驱动因素[J]. 草地学报, 2024, 23(9): 2962-2972 [24] 梁大林, 唐海萍. 青藏高原两种高寒草地植被变化及其水温驱动因素分析[J]. 生态学报, 2022, 42(1): 287-300 [25] SUN Y, YANG Y, ZHANG L, et al. The relative roles of climate variations and human activities in vegetation change in North China[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015, 87: 67-78 [26] 吴雪晴, 张乐乐, 高黎明, 等. 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023, 40(11): 1824-1832 [27] 王金杰, 赵安周, 张兆江, 等. 2000—2018年京津冀地区植被净初级生产力时空演变及其驱动因素[J]. 生态科学, 2021, 40(1): 103-111 [28] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134 [29] 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593 [30] 贺倩, 杨雪琴, 戴晓爱. 2010—2015年三江源地区植被净初级生产力变化特征及影响因素分析[J]. 长江科学院院报, 2020, 37(5): 59-66 [31] 沃笑, 吴良才, 张继平, 等. 基于CASA模型的三江源地区植被净初级生产力遥感估算研究[J]. 干旱区资源与环境, 2014, 28(9): 45-50 [32] SUN Q, LIU W, GAO Y, et al. Spatiotemporal variation and climate influence factors of vegetation ecological quality in the Sanjiangyuan National Park[J]. Sustainability, 2020, 12(16): 6634 [33] ZHANG X, JIN X. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China[J]. Ecological Indicators, 2021, 131: 108223 [34] YIHAN Y, JUNBANG W, PENG L, et al. Climatic changes dominant interannual trend in net primary productivity of alpine vulnerable ecosystems[J]. Journal of Resources and Ecology, 2019, 10(4): 379-388 [35] 李惠梅, 张安录. 三江源草地气候生产力对气候变化的响应[J]. 华中农业大学学报(社会科学版), 2014(1): 124-130 [36] ZHANG Y, HU Q, ZOU F. Spatio-temporal changes of vegetation net primary productivity and its driving factors on the Qinghai-Tibetan Plateau from 2001 to 2017[J]. Remote Sensing, 2021, 13(8): 1566 [37] 张颖, 章超斌, 王钊齐, 等. 气候变化与人为活动对三江源草地生产力影响的定量研究[J]. 草业学报, 2017, 26(5): 1-14 [38] 李作伟, 吴荣军, 马玉平. 气候变化和人类活动对三江源地区植被生产力的影响[J]. 冰川冻土, 2016, 38(3): 804-810 [39] 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估[J]. 地理学报, 2016, 71(1): 3-20 [40] 刘世梁, 孙永秀, 赵海迪, 等. 基于多源数据的三江源区生态工程建设前后草地动态变化及驱动因素研究[J]. 生态学报, 2021, 41(10): 3865-3877 [41] HAN Z, SONG W, DENG X, et al. Grassland ecosystem responses to climate change and human activities within the Three-River Headwaters region of China[J]. Scientific Reports, 2018, 8(1): 9079 [42] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19): 5495-5504 [43] ZHANG Y, ZHANG C, WANG Z, et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012[J]. Science of the Total Environment, 2016, 563: 210-220 [44] CAI H, YANG X, XU X. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects[J]. Ecological Engineering, 2015, 83: 112-119 [45] SHEN X, AN R, FENG L, et al. Vegetation changes in the Three-River Headwaters Region of the Tibetan Plateau of China[J]. Ecological Indicators, 2018, 93: 804-812 [46] SUN J, CHENG G, LI W, et al. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau[J]. Remote Sensing, 2013, 5(4): 1894-1911 [47] NEMANI R R, KEELING C D, HASHIMOTO H, et al. Climate-driven increases in global Terrestrial Net Primary Production from 1982 to 1999[J]. Science, 2003, 300(5625): 1560-1563 [48] 朴世龙, 方精云. 1982~1999年青藏高原植被净第一性生产力及其时空变化[J]. 自然资源学报, 2002(3): 373-380