Acta Agrestia Sinica ›› 2020, Vol. 28 ›› Issue (6): 1498-1507.DOI: 10.11733/j.issn.1007-0435.2020.06.002
Previous Articles Next Articles
WANG Jian-yu, MENG Ze-xin, WANG Rui, TIAN Chen, WANG Xin-yu, CHEN Kang-li, WANG Ze-yu, HU Tian-ming, CHEN Wen-qing
Received:
2020-05-11
Revised:
2020-07-09
Online:
2020-12-15
Published:
2020-12-02
王健宇, 孟泽昕, 王瑞, 田晨, 王新宇, 陈康丽, 王泽宇, 呼天明, 陈文青
通讯作者:
陈文青
作者简介:
王健宇(1998-),男,陕西澄城人,硕士研究生,主要从事草地生态学研究,E-mail:wjy_0214@nwafu.edu.cn;孟泽昕(1995-),男,内蒙古太仆寺旗人,硕士研究生,主要从事草地生态学研究,E-mail:mzx894939243@163.com
基金资助:
CLC Number:
WANG Jian-yu, MENG Ze-xin, WANG Rui, TIAN Chen, WANG Xin-yu, CHEN Kang-li, WANG Ze-yu, HU Tian-ming, CHEN Wen-qing. Soil Fungal Richness Regulates Positive Aboveground Plant Richness-Productivity Relationships in Alpine Steppe at Local Scale[J]. Acta Agrestia Sinica, 2020, 28(6): 1498-1507.
王健宇, 孟泽昕, 王瑞, 田晨, 王新宇, 陈康丽, 王泽宇, 呼天明, 陈文青. 局地尺度高寒草原土壤真菌多样性对地上植物多样性与生产力关系的调控作用[J]. 草地学报, 2020, 28(6): 1498-1507.
[1] Zhou X,Guo Z,Zhang P,et al. Different categories of biodiversity explain productivity variation after fertilization in a Tibetan alpine meadow community[J]. Ecology and Evolution,2017,7(10):3464-3474 [2] Brose U,Hillebrand H. Biodiversity and ecosystem functioning in dynamic landscapes[J]. Proceedings of the Royal Society B:Biological Sciences,2016,371(1694):1-9 [3] Chen W,Wang J,Meng Z,et al. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands[J]. New Phytologist,2020,226(4):1129-1143 [4] Mommer L,Cotton T E A,Raaijmakers J M,et al. Lost in diversity:the interactions between soil-borne fungi,biodiversity and plant productivity[J]. New Phytologist,2018,218(2):542-553 [5] Prieto I,Violle C,Barre P,et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands[J]. Nature Plants,2015,1(4):1-5 [6] Loreau M,Naeem S,Inchausti P,et al. Biodiversity and ecosystem functioning:current knowledge and future challenges[J]. Science,2001,294(5543):804-808 [7] Lannes L S,Bustamante M M,Edwards P J,et al. Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N:P stoichiometry[J]. New Phytologist,2012,196(3):816-823 [8] Dingaan M N V,Walker S,Tsubo M,et al. Influence of Grazing on Plant Diversity-Productivity Relationship in Semi-Arid Grassland of South Africa[J]. Applied Ecology and Environmental Research,2016,14(4):1-13 [9] Morin X,Fahse L,Jactel H,et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition[J]. Scientific Reports,2018,8(1):1-12 [10] Li Z,Li Z,Tong X,et al. Climatic humidity mediates the strength of the species richness-biomass relationship on the Mongolian Plateau steppe[J]. Science of the Total Environment,2020,718:137252 [11] 姜风岩,位晓婷,康濒月,等. 模拟增温对高寒草甸植物物种多样性与初级生产力的影响[J]. 草地学报,2019,27(2):298-305 [12] Luo S,De Deyn G B,Jiang B,et al. Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility[J]. Journal of Ecology,2017,105(6):1766-1774 [13] Jucker T,Bouriaud O,Avacaritei D,et al. Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests[J]. Journal of Ecology,2014,102(5):1202-1213 [14] Wang Z,Chiarucci A,Arratia J F. Integrative models explain the relationships between species richness and productivity in plant communities[J]. Scientific Reports,2019,9(1):1-17 [15] Van Der Heijden M G,De Bruin S,Luckerhoff L,et al. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity,plant nutrition and seedling recruitment[J]. Isme Journal,2016,10(2):389-399 [16] Bardgett R D,Van Der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature,2014,515(7528):505-511 [17] Voriskova J,Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes[J]. Isme Journal,2013,7(3):477-486 [18] Chen W,Xu R,Wu Y,et al. Plant diversity is coupled with beta not alpha diversity of soil fungal communities following N enrichment in a semi-arid grassland[J]. Soil Biology and Biochemistry,2018,116(1):388-398 [19] Perez L I,Gundel P E,Marrero H J,et al. Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease[J]. Oecologia,2017,184(1):237-245 [20] Bell-Dereske L,Gao X D,Masiello C A,et al. Plant-fungal symbiosis affects litter decomposition during primary succession[J]. Oikos,2017,126(6):801-811 [21] Van Der Heijden M G A,Dombrowski N,Schlaeppi K. Continuum of root-fungal symbioses for plant nutrition[J]. Proc Natl Acad Sci U S A,2017,114(44):11574-11576 [22] 刘润进. 菌根真菌是唱响生物共生交响曲的主角——菌根真菌专辑序言[J]. 菌物学报,2017,36(7):791-799 [23] 李芳,高萍,段廷玉. AM菌根真菌对非生物逆境的响应及其机制[J]. 草地学报,2016,24(03):491-500 [24] Bever J D,Mangan S A,Alexander H M. Maintenance of Plant Species Diversity by Pathogens[J]. Annual Review of Ecology,Evolution,and Systematics,2015,46(1):305-325 [25] Wang G,Schultz P,Tipton A,et al. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species[J]. Ecology Letters,2019,22(8):1221-1232 [26] Maron J L,Marler M,Klironomos J N,et al. Soil fungal pathogens and the relationship between plant diversity and productivity[J]. Ecology Letters,2011,14(1):36-41 [27] Klironomos J N,Mccune J,Hart M,et al. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity[J]. Ecology Letters,2000,3(2):137-141 [28] Vorholt J A,Vogel C,Carlstrom C I,et al. Establishing Causality:Opportunities of Synthetic Communities for Plant Microbiome Research[J]. Cell Host & Microbe,2017,22(2):142-155 [29] Semchenko M,Leff J W,Lozano Y M,et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland[J]. Science Advances,2018,4(11):1-9 [30] Zhang Y,Dong S,Gao Q,et al. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes[J]. Scientific Reports,2017,7(1):1-10 [31] Li Y,Dong S K,Liu S L,et al. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity[J]. Ecological Engineering,2019,127(1):375-382 [32] 郑度,赵东升. 青藏高原的自然环境特征[J]. 科技导报,2017,35(06):13-22 [33] 青海省草原总站. 青海草地资源[M]. 西宁:青海人民出版社,2012:323-332 [34] Tran T S,Simard R R. Mehlich III-extractable elements[M]. Soil Sampling and Methods of Analysis. Taylor & Francis.1993:43-49 [35] Gardes M,Bruns T D. Its primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts[J]. Molecular Ecology,1993,2(2):113-118 [36] Bellemain E,Carlsen T,Brochmann C,et al. ITS as an environmental DNA barcode for fungi:an in silico approach reveals potential PCR biases[J]. Bmc Microbiology,2010,10(189):1-9 [37] Abarenkov K,Nilsson R H,Larsson K H,et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives[J]. New Phytologist,2010,186(2):281-285 [38] 姜哲浩,周恒,张德罡,等. 青藏高原不同海拔梯度黄花棘豆内生真菌多样性研究[J]. 草地学报,2019,27(6):1526-1536 [39] Adler P B,Seabloom E W,Borer E T,et al. Productivity is a poor predictor of plant species richness[J]. Science,2011,333(6050):1750-1753 [40] 罗亚勇,孟庆涛,张静辉,等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系[J]. 冰川冻土,2014,36(5):1298-1305 [41] Fraser L H,Pither J,Jentsch A,et al. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness[J]. Science,2015,349(6245):302-305 [42] Yang T,Adams J M,Shi Y,et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau:associations with plant diversity and productivity[J]. New Phytologist,2017,215(2):756-765 [43] 赵兴鸽,张世挺,牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系[J]. 应用与环境生物学报,2020,26(01):1-9 [44] Liu L,Zhu K,Wurzburger N,et al. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales[J]. Ecosphere,2020,11(1):20 [45] 王浩,吴爱姣,刘保兴,等. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报,2020:1-19 [46] Wagg C,Schlaeppi K,Banerjee S,et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications,2019,10(4841):1-10 [47] Van Der Heijden M G,Bardgett R D,Van Straalen N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310 [48] Hiiesalu I,Partel M,Davison J,et al. Species richness of arbuscular mycorrhizal fungi:associations with grassland plant richness and biomass[J]. New Phytologist,2014,203(1):233-244 [49] Santonja M,Rancon A,Fromin N,et al. Plant litter diversity increases microbial abundance,fungal diversity,and carbon and nitrogen cycling in a Mediterranean shrubland[J]. Soil Biology & Biochemistry,2017,111:124-134 [50] Steinauer K,Chatzinotas A,Eisenhauer N. Root exudate cocktails:the link between plant diversity and soil microorganisms?[J]. Ecology and Evolution,2016,6(20):7387-7396 [51] Otsing E,Barantal S,Anslan S,et al. Litter species richness and composition effects on fungal richness and community structure in decomposing foliar and root litter[J]. Soil Biology & Biochemistry,2018,125:328-339 [52] Waring B G,Alvarez-Cansino L,Barry K E,et al. Pervasive and strong effects of plants on soil chemistry:a meta-analysis of individual plant ‘Zinke’ effects[J]. Proceedings of the Royal Society B:Biological Sciences,2015,282(1812):91-98 [53] Tiunov A V,Scheu S. Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities[J]. Ecology Letters,2005,8(6):618-625 [54] Bodeker I T M,Lindahl B D,Olson A,et al. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently[J]. Functional Ecology,2016,30(12):1967-1978 [55] Kranabetter J M,Harman-Denhoed R,Hawkins B J. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C:N:P) across temperate rainforests as evidence of shared nutrient constraints among symbionts[J]. New Phytologist,2019,221(1):482-492 [56] Philippot L,Raaijmakers J M,Lemanceau P,et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol,2013,11(11):789-799 [57] Loreau M,Hector A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature,2001,412(6842):72-76 [58] Hooper D U,Chapin F S,Ewel J J,et al. Effects of biodiversity on ecosystem functioning:A consensus of current knowledge[J]. Ecological Monographs,2005,75(1):3-35 |
[1] | YAN He-piao, LI Wen-long, LIANG Tian-gang, ZHOU Hua-kun, CAO Ya-peng, LIAO Yuan-cheng. Effects of Different Restoration Measures on Degraded Alpine Grasslands of the Tibetan Plateau: A meta-analysis [J]. Acta Agrestia Sinica, 2021, 29(S1): 190-198. |
[2] | WANG Chao, WANG Xiao-li , SHI Jian-jun , WU Jian-li , XING Yun-fei ,Cairenqiuji, Yixicuomao. Effect of Rest-grazing in Regreen-up Period on Plant Community Characteristics of Maduo Alpine Steppe [J]. Acta Agrestia Sinica, 2021, 29(4): 763-771. |
[3] | ZHOU Hui-cheng, ZHOU Heng, XIAO Hai-long, MA Yuan, Li Lin-zhi, ZHANG De-gang, CHEN Jian-gang. The Variation Characteristics of Heavy Metal Content,Nutrient and Enzyme Activity in Soil of Alpine Steppe with Different Degradation Gradient in the Three River-Headwaters Region [J]. Acta Agrestia Sinica, 2020, 28(3): 784-792. |
[4] | WANG Ling, SHI Jian-jun, DONG Quan-min, YIN Ya-li, WANG Xiao-li, YU Yang, ZHANG Chun-ping. Effects of Nitrogen and Phosphorus Addition on Community Diversity and Biomass of Alpine Steppe [J]. Acta Agrestia Sinica, 2019, 27(6): 1633-1642. |
[5] | QIN Fu-wen, KANG Bin-yue, JIANG Feng-yan, XU Heng-kang, ZHOU Hua-kun, WEI Xiao-ting, LIU Xiao-li, SHAO Xin-qing. Effects of Biological Crusts Succession on Soil Microbial Communities in Alpine Steppe [J]. Acta Agrestia Sinica, 2019, 27(4): 832-840. |
[6] | JIANG Zhe-hao, ZHOU Ze, CHEN Jian-zhong, ZHANG De-gang, CHEN Jian-gang, LIU Xiao-ni. Soil Nutrient and Stoichiometry of Alpine Steppe Under Different Altitudes in the Three-River Headwaters Region [J]. Acta Agrestia Sinica, 2019, 27(4): 1029-1036. |
[7] | WU Jian-bo, WANG Xiao-dan. Effect of Enclosure Ages on Community Characters and Biomass of the Degraded Alpine Steppe at the Northern Tibet [J]. Acta Agrestia Sinica, 2017, 25(2): 261-266. |
[8] | LI Ya-juan, CAO Guang-min, LONG Rui-jun, YAO Tuo. Effects of Land Use Patterns on Grassland Biomass and Soil Properties in Three-river Headwater Area [J]. Acta Agrestia Sinica, 2016, 24(3): 524-529. |
[9] | Tenzin-tarchen, Xuri, WEI Xue-hong, WEI Da, LIU Yong-wen, WANG Ying-hong. Research on Key Greenhouse Gas Fluxes across Alpine Steppe, Alpine Meadow and Swamp Meadow in Nam Co, Tibetan Plateau [J]. Acta Agrestia Sinica, 2014, 22(3): 493-501. |
[10] | ZHENG Wei, LI Shi-xiong, DONG Quan-min, LIU Yu. Effects of Grazing Systems on the Community Characteristics of Alpine Steppe in Qinghai Lake Region [J]. Acta Agrestia Sinica, 2013, 21(5): 869-874. |
[11] | WEI Da, XU Ri, WANG Ying-hong, YAO Tan-dong. CH4,N2O and CO2 Fluxes and Correlation with Environmental Factors of Alpine Steppe Grassland in Nam Co Region of Tibetan Plateau [J]. , 2011, 19(3): 412-419. |
[12] | ZHANG Wen-yan, FAN Jiang-wen, ZHONG Hua-ping, HU Zhong-min, SONG Lu-lu, WANG Ning. The Nitrogen:Phosphorus Stoichiometry of Different Plant Functional groups for Dominant Species of Typical Steppes in China [J]. , 2010, 18(4): 503-509. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||