中文  |  English

菌物学报, 2021, 40(2): 294-305 doi: 10.13346/j.mycosystema.190262

综述

网柄细胞状黏菌生物学特性及其应用研究进展

邹月,, 刘朴,*, 李玉,*

吉林农业大学食药用菌教育部工程研究中心 菌类作物优质高产抗病种质资源的挖掘、创制及应用学科创新引智基地(111实验室) 食用菌新种质资源创制国际联合研究中心 吉林 长春 130118

Research progress of biological characteristics and applications of dictyostelid cellular slime molds

ZOU Yue,, LIU Pu,*, LI Yu,*

Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education; Overseas Expertise Introduction Center for Discipline Innovation (“111” Center); Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China

责任编辑: 韩丽

收稿日期: 2019-07-15   接受日期: 2020-03-11   网络出版日期: 2021-02-22

基金资助: 国家自然科学基金.  31870015
国家自然科学基金.  32070009
吉林省科技发展计划.  20200801068GH

Corresponding authors: * E-mail: puliu1982@yahoo.com, fungi966@126.com ORCID: ZOU Yue (0000-0003-1209-8431)

Received: 2019-07-15   Accepted: 2020-03-11   Online: 2021-02-22

Fund supported: National Natural Science Foundation of China.  31870015
National Natural Science Foundation of China.  32070009
Science and Technology Development Program of Jilin Province.  20200801068GH

作者简介 About authors

刘朴,吉林农业大学食药用菌教育部工程研究中心、植物保护学院教授,吉林省高校科研春苗人才获全国百篇优秀博士学位论文提名奖,教育部科学技术进步一等奖1项,吉林省自然科学学术成果二、三等奖各1项,国际药用菌学会秘书处成员从事菌物资源,特别是黏菌领域的研究已发表新分类单元19个,在《FungalBiologyReviews》《mSphere》和《Mycologia》等国际学术期刊上发表论文20余篇;主编、副主编黏菌专著各1部,参编英文专著2部,其中1部为与十国黏菌专家联合编写,并在Elsevier国际出版集团出版 , E-mail:puliu1982@yahoo.com

李玉,中国工程院院士,俄罗斯科学院外籍院士现任国际药用菌学会主席,中国菌物学会名誉理事长,中国食用菌协会名誉会长等职从事菌物科学与食用菌工程技术和产业化研究,建成了位居国内前列水平的菌类种质资源库获得国家自然科学奖二等奖1项、何梁何利基金科学与技术进步奖1项、吉林省科技进步奖一等奖3项、二等奖1项在学术刊物上发表论文500余篇,其中70篇被“SCI”收录或引用,著作20余部,获得国家已授权发明专利20项在国内率先形成了专科、本科、硕士、博士、博士后较完整的菌物科学与食用菌工程人才培养体系,为我国的菌物事业做出突出贡献 , E-mail:fungi966@126.com

摘要

网柄细胞状黏菌是一类介于植物和动物之间的原生生物。尽管形态微小,但因为同时具有动物细胞和植物细胞的特点,且生命周期短暂易重复,故而对其进行生物学特性及应用的研究具有重要价值。本文从网柄细胞状黏菌的生活史循环、生物学特性、生态多样性、在医学和药物领域的探索及其与其他微生物关系等5个方面探讨网柄细胞状黏菌的生物学特性及应用的研究进展及意义,展望网柄细胞状黏菌未来在医学和生态等方面的研究前景及其潜在的应用价值,旨在为我国网柄细胞状黏菌同其他领域的交叉研究相结合提供视野,探索其在促进人类的科学进步、改善生活环境及攻克疾病方面的作用及意义。

关键词: 网柄菌 ; 生态多样性 ; 生活史 ; 生物模型 ; 微生物

Abstract

Dictyostelid cellular slime molds are a group of protist with habits and characteristics mediated between plant and animal. The biological characteristics and applications of dictyostelid cellular slime molds have essential research values because they are small, short cyclic and easily proliferous. The life cycle, biological characteristics, ecodiversity, explorations in connection with medical and medicinal science, relationship with other microorganism of dictyostelids are reviewed, and potential applications of dictyostelids in medical science, ecology, environment improvements, etc. in future are prospected.

Keywords: dictyostelids ; ecodiversity ; life cycle ; biological models ; microorganism

PDF (715KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邹月, 刘朴, 李玉. 网柄细胞状黏菌生物学特性及其应用研究进展. 菌物学报[J], 2021, 40(2): 294-305 doi:10.13346/j.mycosystema.190262

ZOU Yue, LIU Pu, LI Yu. Research progress of biological characteristics and applications of dictyostelid cellular slime molds. Mycosystema[J], 2021, 40(2): 294-305 doi:10.13346/j.mycosystema.190262

网柄细胞状黏菌(dictyostelid cellular slime molds,简称网柄菌dictyostelids),隶属于原生生物界Protist。网柄菌形成与真黏菌营养体原生质团相似的假原生质团(pseudoplasmodium),与黏菌门、集胞菌门、根肿菌门的原生生物共同被称为黏菌,因其子实体柄具细胞状结构,被称为网柄细胞状黏菌(Alexopoulos et al. 1996)。网柄菌的营养体黏变形体为单细胞结构,无细胞壁,具有细胞核、线粒体、伸缩泡(contractile vacuole)等细胞器(Fets et al. 2010)。网柄菌的子实体及营养体均十分微小,肉眼很难直接观察到,多生长在森林的枯枝落叶层及地表土壤中(Alexopoulos et al. 1996;Vadell et al. 2018),但在其他土壤如热带森林特有的附生植物基部的“冠层土壤(canopy soil)”中也有生长(Stephenson & Landolt 1998,2011)。网柄菌与原柄菌(protostelids)及真黏菌(myxomycetes)一起成为土壤中原生生物的优势种群(Stephenson et al. 2011;Liu et al. 2019a,2019b)。

1 网柄菌的生活史

通常网柄菌的生活史主要为无性生活史(图1),即在孢堆果顶部的黏性孢子团中产生孢子(图1H)(Fets et al. 2010),孢子成熟后在适宜的条件下萌发(图1A),释放出“黏变形体(myxamoebae)”或称“阿米巴(amoebae)”(图1B)。黏变形体可形成伪足(郭晓慧等 2013),像动物一样移动、摄食,其食物为土壤中生活的其他微生物,以细菌为主(Romeralo et al. 2013)。黏变形体依靠细菌分泌的叶酸来寻找、吞噬细菌,并于细胞内将其分解吸收(Cosson & Soldati 2008;Fets et al. 2010);缺乏食物时,一部分处于饥饿状态的黏变形体细胞会产生信号分子(cAMP),而附近其他的细胞则会向着产生信号分子的黏变形体聚集(Fets et al. 2010;郭晓慧等 2013),随着饥饿程度的增加,聚集速度加快,黏变形体形成的伪足也随之增多(郭晓慧等 2013)。黏变形体聚集过程中形成了明显的细胞流称为“集群(aggregation)”(图1C)。集群形成的同时,中心位置会形成一个向上生长的指状突起(finger)(图1D),该突起逐渐拔起,最终形成一个多细胞结构“假原生质团(pseudoplasmodium)”(图1E),其外表类似蛞蝓,也被称作“蛞蝓体(slug)”(Raper 1984;Alexopoulos et al. 1996;Romeralo et al. 2013)。蛞蝓体前半部分的前柄细胞和后半部分的前孢子细胞共同构成假原生质团,其中,前柄细胞约占假原生质团中细胞总数的20%,前孢子细胞约占假原生质团中细胞总数的80%(Shaulsky & Kessin 2007);假原生质团具有迁移的能力,有的网柄菌假原生质团带柄迁移,有的种不带柄迁移,迁移一段距离后会形成一个小型隆起的细胞集合“孢堆原(sorogen)”并向上拔顶(图1F),最终形成子实体,即“孢堆果(sorocarp)”(图1G)。孢堆果的柄和分支由假原生质团时期的前柄细胞分化而成(柄细胞及分支细胞均为凋亡细胞),而孢堆果的“孢子团(sorus)”则由假原生质团时期的前孢子细胞分化而成——随着柄和分支的形成,前孢子细胞由孢堆原向柄顶部移动,达至顶端后即分化形成一个充满孢子的孢子团,孢子团由粘液构成,呈球形或柠檬形,多为白色,但有的种类呈紫色、红色、金黄色或奶油色(Shaulsky & Kessin 2007;Fets et al. 2010;李丽等 2010)。成熟的孢堆果类似于真菌的子实体,不再移动,其柄部的凋亡细胞形成细胞壁(Fets et al. 2010;李丽等 2010;Uchikawa et al. 2011;Jack et al. 2015;Liu et al. 2019c)。另外,单细胞时期网柄菌的黏变形体还可以进行有丝分裂(图1I),由单个黏变形体分裂为两个独立的黏变形体细胞(Raper 1984;Romeralo et al. 2012)。

图1

图1   盘基网柄菌的生活史

Fig. 1   Life cycle of Dictyostelium discoideum.


网柄菌虽然存在有性阶段,但尚未在许多种中观察到(Romeralo et al. 2012)。两个单倍黏变形体结合并经核配形成二倍体多细胞休眠结构“大孢囊(macrocyst)”,其外部具有数层细胞壁。在吞噬周围的黏变形体后,大孢囊进行减数分裂(图1J,1K),适时从内部释放出许多单倍体黏变形体 (图1L)(Raper 1984;Alexopoulos et al. 1996;Kawakami & Hagiwara 1999;Romeralo et al. 2012)。

另外,在环境条件(水分、温度、pH值)不适时,网柄菌阿米巴会形成球形的厚壁结构“小孢囊(microcyst)”,以抵抗逆境(Alexopoulos et al. 1996)。

近年,国际上伴随网柄菌新种的发现从而增加了相关生活史研究的报道,对网柄菌生活史不同阶段生物学特性的认知也不断深入(Sheikh et al. 2018),如从显微结构特征到超微结构特征的观察(Liu et al. 2019a)。然而,具体到各种属独有的个体发育、特征分化、形态建成等方面,仍待进一步研究;对网柄菌生长过程中各阶段发育及演化的调控因素,可利用分子生物学方法,从系统发育、基因表达与修饰等方面来进行研究。

2 网柄菌的生物学特性

网柄菌的集群细胞具有社会属性,这在网柄菌的发育过程中意义重大。网柄菌每形成一个子实体,20%的集群细胞形成柄细胞且柄细胞不具繁殖作用,其余80%的集群细胞发育成孢子并具繁殖作用,从进化角度来看,这是“利他主义”的体现(Fets et al. 2010)。在实验室中,还分离到一些网柄菌的突变株,研究发现当一个网柄菌突变株在混合种群中生长时,它会减少形成柄细胞的细胞份额,而形成更多的孢子,从与其共同生长的正常网柄菌菌株中获取柄细胞,这部分细胞被定义为“欺骗突变株(cheater mutant)”,因为它们只从社会利益中获利,而不向集体贡献自己的力量(Shaulsky & Kessin 2007;Fets et al. 2010)。

盘基网柄菌D. discoideum柄细胞内有类似植物细胞的液泡(stalk-cell vacuoles),液泡可以收缩(Fets et al. 2010),来源于酸性囊泡(acidic vesicles)和自噬体(autophagosomes),二者融合形成自噬溶酶体(autolysosomes)。在细胞壁形成时,酸性囊泡与自噬体会多次进行融合与扩张,孢堆果的柄细胞从而快速形成了膨压,所以盘基网柄菌坚硬的柄才能将孢子团支撑在空中。铵载体A(ammonium transporter A,AmtA)能够调节自噬溶酶体的pH,进而调节与控制盘基网柄菌D. discoideum柄细胞的分化(Uchikawa et al. 2011)。

盘基网柄菌也有与动物类似的细胞,其营养体时期黏变形体细胞会向着前方长出具有大量肌动蛋白的伪足(pseudopods),并利用肌球蛋白缩回细胞后半部分,以这种像阿米巴(amoebae)一样的方式移动,该特有移动方式分为3种:以静水压推动、依靠肌动蛋白自由扩张来移动、或以类似角膜细胞的单一扁平且饱含肌动蛋白的伪足延伸(Fets et al. 2010)。网柄菌可以像动物一样捕食,捕食对象主要为土壤中的酵母菌和细菌(Romeralo et al. 2013)。研究表明,网柄菌对作为食物的细菌具有偏好性,其对不同种类细菌生物膜(biofilm)的捕食效率不同(Sanders et al. 2017)。

盘基网柄菌除了具有与普通动物和植物相似的特征外,还具有与人类相近的行为模式——“农业”活动,其部分孢堆果能够对其自身生长所需的食物细菌进行播种,并收获细菌。具有这种行为模式的孢堆果约占盘基网柄菌野生型的1/3,称其为“农民(farmer)”,因它们可以携带、播种并收获食物细菌(Brock et al. 2011,2018)。但这种“农业”行为很原始,盘基网柄菌营养体时期将细菌作为主要食物源,捕获细菌后,仅吞噬并消化部分细菌,另一些细菌则被保存下来,称为“种子”。随着盘基网柄菌的发育,“种子”细菌会被运送至孢堆果顶部,与孢子共同存在于盘基网柄菌孢子团中。当成熟的孢堆果散播孢子时,“种子”细菌也一同散布于环境中,此过程称为“播种”细菌。当环境中缺少细菌时,散播的细菌可为刚萌发的盘基网柄菌孢子提供营养;但如果孢子散落的环境中富含细菌,“农民”携带并“播种”的细菌便会失去作用。因此,部分盘基网柄菌的孢堆果(约为总数的2/3)不去携带细菌,而是直接将其“吃”掉来获取更多的营养,这部分盘基网柄菌被称为“非农民(non-farmer)”(Brock et al. 2011)。

网柄菌具有独特的习性,对其生长发育过程中各种特性的探索显得尤为重要。将生态学和遗传学研究相结合,深入研究部分网柄菌“欺骗突变株”形成的起源及途径,从而进一步了解网柄菌的生物进化与环境的关系(Shaulsky & Kessin 2007)。网柄菌的阿米巴(amoebae)可移动和摄食,对不同种类的食物细菌具有偏好性,未来可以探索和应用其对生活环境中的有害细菌的生物防治功能(Fets et al. 2010;Sanders et al. 2017)。

3 网柄菌的生态多样性

网柄菌能够经由水及其他生物体表和体内的携带而进行传播(Romeralo et al. 2013)。网柄菌可以被候鸟携带,随着鸟类的迁移而到达远方(Suthers 1985);其孢子也可以由蝾螈、啮齿动物、蝙蝠、蜗牛这样的无脊椎动物、飞蛾和蟋蟀这样的昆虫来近距离传播(Stephenson & Landolt 2011);网柄菌甚至可以通过人们穿的鞋子携带而传播(Perrigo et al. 2012)。因此,网柄菌在世界各地均有分布,既包括一些大个体多分支的物种,如轮柄菌属Polysphondylium;又包括一些形态微小、长度甚至不到1mm的管柄菌属Acytostelium;亦或是物种数量最多的网柄菌属DictyosteliumCavender et al. 2005,2015)。除分类学研究外,在美国(Landolt et al. 2006)、葡萄牙(Romeralo et al. 2011)、西班牙(Romeralo & Lado 2008)、法国(Paillet & Satre 2010)、波多黎各(Stephenson et al. 1999)、古巴、澳大利亚、哥斯达黎加(Stephenson & Landolt 2011;Liu et al. 2019b)、中国(Liu et al. 2019a)和瑞典(Perrigo et al. 2013)等国家的部分地区,均有对网柄菌生态学的研究,包括物种丰富度、多样性、分布及影响这些生态特征的自然因素,如生境、海拔和温度等。

网柄菌多生长在森林地表的土壤及腐殖质层,但不局限于此,其生境广泛,从茂密的森林到耕作的农田,从广袤的草原到巍峨的高山,从严热的荒漠到寒冷的苔原,乃至杳无人迹的极地,深邃幽暗的洞穴,甚至是动物的粪便上,都可发现网柄菌的踪迹(Raper 1984;Alexopoulos et al. 1996)。Stephenson & Landolt(1998,2011)发现网柄菌除了生长在地表的土壤中,还可在“空中”生长,如在热带森林中,从距地面约40m高的附生植物基部附着一层死的有机物(称为“冠层土壤canopy soil”)中发现网柄菌的生长,这些有机物来自腐烂的附生植物、部分腐烂的树皮、昆虫的碎片和一些凋落物。或许是受限于生存环境的影响,“冠层土壤”中的网柄菌密度并不大,但也因其生境特殊而具有重要研究意义。

在湿度较高且温度较低的地区,网柄菌物种丰富度较高;与人为干扰较多的森林相比,网柄菌在人为干扰较少的森林中具有更高的丰富度(Romeralo & Lado 2008;Paillet & Satre 2010;Romeralo et al. 2011)。而在海拔变化对网柄菌丰富度的影响方面,研究结果略有差异,Stephenson et al.(1999)认为海拔低的地方网柄菌丰富度更高;Paillet & Satre(2010)认为网柄菌的丰富度随着海拔的升高而升高。Perrigo et al.(2013)对瑞典北部不同纬度的网柄菌进行多样性研究,发现网柄菌的物种丰富度会随着纬度的升高而相应降低。Liu et al.(2019a)研究中国青藏高原高海拔地区的网柄菌生物多样性,结果表明在海拔适中的地区网柄菌的丰度反而高于较低海拔或较高海拔地区,说明海拔并不是影响网柄菌丰度的主要因素;并进一步证明其他生物因素如森林植被类型对于网柄菌丰度影响较大。

网柄菌是以细菌为食的土壤原生生物(Romeralo et al. 2013),其生境条件丰富(Raper 1984),能经由其他生物携带而传播(Suthers 1985),今后对网柄菌生物多样性的研究,应更着眼于结合生境中的自然因素与生物因素,评价整体的生态特征,而非单独调查研究某一种自然因素与网柄菌多样性的关系(Stephenson et al. 1999;Perrigo et al. 2013)。

4 网柄菌应用于医学和药物研究的探索

网柄菌的黏变形体是一种原始的巨噬细胞,与动物免疫系统的吞噬细胞极其相似,二者均能爬行并以吞噬作用来获得细菌,可以网柄菌作为模型,通过其对细菌的吞噬能力研究吞噬作用(Cosson & Soldati 2008;Fets et al. 2010)。盘基网柄菌类似于高等生物的免疫细胞,假原生质团时期的细胞能够吞噬毒物,具有免疫和解毒活性,被称为类免疫细胞。这类细胞将毒物吞噬并包裹在细胞内,当假原生质团爬行时,便将含有毒物的细胞团排出体外(梁静静等 2012)。

由于不断抵抗环境中能够捕食细菌的阿米巴,细菌的致病能力得以提高,可将网柄菌作为宿主来研究细菌的毒力特征(Lima et al. 2011;Steinert 2011)。这为分析病原细菌和宿主细胞之间复杂的互作关系提供一个独特方法,可对细菌及其宿主网柄菌进行基因调控(Cosson & Soldati 2008)。以盘基网柄菌为模型,通过对其和假单胞菌属Pseudomonas细菌相互作用的研究,Lima et al.(2011)提出一个观点,即环境中的假单胞菌属细菌对捕食者有选择压力,介绍了一个能够评估大量假单胞菌菌株毒性的独特系统。

网柄菌成为在研究一些人类疾病的机理与治疗方面的模型生物(Fets et al. 2010)。盘基网柄菌细胞在行为、结构和细胞内的信号通路方面与哺乳动物细胞有许多共通之处,可将其用于研究人类致病机理以及寻找新药方面,如在对常见的儿童神经退化性疾病——神经元腊样脂褐质沉积症(neuronal ceroid lipofuscinosis)的致病机理的认识上有重要作用(Phillips & Gomer 2015)。研究表明盘基网柄菌中包含分化诱导因子DIF-1、DIF-2和DIF-3,这些蛋白具有抗癌活性;而DIF衍生物DIF-3(+2)和Bu-DIF-3同样能够显著作用于一种常见的转移性骨癌——骨肉瘤,能抑制癌细胞的增殖、迁移和转移(Kay & Jermyn 1983;Kubohara et al. 2015)。另外,盘基网柄菌在药物基因组学方面也有研究应用,即对药物的作用机制进行研究,如情绪稳定剂valproic acid和lithium以及化疗药物cisplatin(Alexander & Alexander 2011;Ludtmann et al. 2011)。

细胞凋亡的异常调控能够导致许多疾病的发生,盘基网柄菌可作为研究细胞凋亡的模型。盘基网柄菌子实体的柄细胞无法再恢复活力,柄细胞的形成一方面为细胞分化,另一方面又是细胞凋亡过程,已有研究发现盘基网柄菌细胞凋亡与高等生物的细胞凋亡既存在相似之处,却又有自己独特的性质(Whittingham & Raper 1960;Thompson et al. 1992)。因此对网柄菌的细胞凋亡进行研究,有助于了解高等生物的发育与进化过程。

在适宜的环境中,盘基网柄菌的突变株RNAi-allC细胞的个体变小、周期缩短且分裂速度加快,其特征同肿瘤细胞相似。提取突变型和野生型盘基网柄菌细胞的RNA,发现一个在突变型细胞中表达但不在野生型细胞中表达的差异片段。该片段编码的蛋白质与白三烯A4水解酶有相似性,推测该差异片段编码的蛋白具有白三烯A4水解酶的功能,即水解白三烯A4,生成一种能有效调节白细胞向炎症中心聚集的趋化因子——白三烯B4(LTB4)。白三烯B4通过在免疫应答反应的过程中刺激毛细血管的通透性,介导细胞有丝分裂、增殖淋巴细胞,这类似于肿瘤细胞的特征。前期研究表明,白三稀及其受体的表达在多种癌细胞如人的结肠癌、胰腺癌、恶性淋巴瘤中均有发现(范頔 2013)。通过对盘基网柄菌突变株细胞周期的研究,对探索癌症的发生原因同样有帮助,细胞周期蛋白(cyclins)异常表达时,细胞周期循环加速、细胞过度增殖,从而形成肿瘤细胞。通过盘基网柄菌突变株allC和野生菌株KAx-3来研究allC细胞周期的异常,有助于研究高等动物癌细胞的增殖及细胞周期缩短(周开梅和郭瑞珍 2010;周子康等 2014)。

网柄菌黏变形体以阿米巴特有的方式移动而产生趋化现象,黏变形体对细菌产生的叶酸和极粒产生的cAMP敏感,会向释放这些化学信息的细胞聚集,可以此来研究免疫缺陷、神经缺陷、伤口愈合、胚胎形成和肿瘤细胞代谢等方面(Traub & Hohl 1976;Fets et al. 2010;Carnell & Insall 2011)。动物细胞内存在线粒体突变现象,这与神经组织退化疾病存在一定关系,其内部的某些通路失调时,会引发神经退行性疾病。结构简单的网柄菌方便取材观察,因此可将网柄菌作为模型,研究神经退行性疾病(Fets et al. 2010;Stephenson et al. 2011;Annesley et al. 2014)。

网柄菌生理结构特殊,可作为免疫细胞的模型进行研究。其吞噬及排出毒物的特性,可为体内免疫细胞对毒物的作用提供研究视野(梁静静等 2012)。网柄菌与细菌的互作,为病原细菌的研究提供一个新的视角(Cosson & Soldati 2008)。网柄菌还可以用于药物、细胞凋亡、肿瘤及高等动物的某些生理作用的研究(Whittingham & Raper 1960;Kay & Jermyn 1983;Thompson et al. 1992;Fets et al. 2010;范頔 2013;周子康等 2014;Kubohara et al. 2015;周艳辉等 2019)。此前,在研究人类疾病时,将网柄菌作为研究模型,很少将网柄菌直接用来治疗疾病(Fets et al. 2010)。然而,单细胞时期的网柄菌阿米巴个体微小,能够大量繁殖并捕食有害细菌,而发育至多细胞时期时,网柄菌假原质团肉眼可见方便观察,细胞间连接紧密,可以考虑今后将网柄菌直接应用于治疗细菌性的动植物疾病(Sanders et al. 2017)。

5 网柄菌与其他微生物

Markman et al.(2018)观察到鼠疫杆菌Yersinia pestis能感染盘基网柄菌阿米巴,在感染超过48h后仍在阿米巴体内持续存活并复制,表示在土壤中生存的阿米巴可能成为鼠疫杆菌的环境储存库(environmental plague reservoirs),此研究揭示了阿米巴对环境病原菌的进化选择及对其他隐性环境病原菌储存的模型的应用,结果表明阿米巴是鼠疫杆菌的潜在宿主,还强调必须认识到阿米巴对公共卫生、农业、保护和生物防御的威胁。

此外,Dinh et al.(2018)发现凝集素可以改变盘基网柄菌对细菌的细胞反应,由此建立阿米巴体内的微生物群系。该研究进一步说明,在真核生物的系统发育过程中,内源性凝集素或环境凝集素可能对微生物群系的平衡产生影响。Liu et al.(2019d)对束生异柄菌Heterostelium colligatum不同发育阶段如集群、假原质团及孢堆果等携带的内生细菌的多样性进行研究,发现在束生异柄菌不同发育阶段携带的内生细菌也不同,并将其与盘基网柄菌携带的内生细菌种类相比较,结果表明网柄菌的种类不同,所携带的细菌种类也不同,还进一步明确了不同生长发育阶段的网柄菌与内生细菌的关系。

6 展望

网柄菌是一类广泛存在于世界各地的微生物,虽然个体微小,但具有重要作用。从1869年世界上首次发现网柄菌至今仅150余年的时间(Alexopoulos et al. 1996),研究历史尚短,对其认知较浅,但其在生物学特性及生态多样性等方面均有巨大的研究潜力。网柄菌具有由单细胞至多细胞发育的独特生命周期和与哺乳动物免疫细胞相似的吞噬作用,使其成为科学研究中有价值的生物模型(Fets et al. 2010)。网柄菌在细胞凋亡及细胞行为领域的研究(Whittingham & Raper 1960;Thompson et al. 1992;Fets et al. 2010;Phillips & Gomer 2015),可以帮助认清人类疾病发生及作用的机理。此外,网柄菌对细菌具有捕食性,为治疗动物、植物及人类的细菌性疾病提供新的思路(Sanders et al. 2017);盘基网柄菌可以成为鼠疫杆菌的宿主(Markman et al. 2018),为存在环境鼠疫储存库(environmental plague reservoirs)的学说提供证据,对日后彻底消灭如鼠疫等危害人类生存的细菌性疾病具有一定的启示作用;网柄菌可以携带细菌(Brock et al. 2011;Brock et al. 2018;Liu et al. 2019d),有助于深入认识和理解真核生物和原核生物之间的协同进化作用。目前,网柄菌研究仅限于基础生物科学方面,在工程及应用科学方面较少涉足。因此,未来亟须进一步将网柄菌与工程学及计算机科学等学科相结合,进行交叉研究。

致谢:

感谢吉林农业大学食药用菌工程研究中心的老师及同学们在文献搜集上的指导和帮助。

参考文献

Alexander S, Alexander H, 2011.

Lead genetic studies in Dictyostelium discoideum and translational studies in human cells demonstrate that sphingolipids are key regulators of sensitivity to cisplatin and other anticancer drugs

Seminars in Cell & Developmental Biology, 22(1):97-104

DOI:10.1016/j.semcdb.2010.10.005      URL     PMID:20951822      [本文引用: 1]

A Dictyostelium discoideum mutant with a disruption in the sphingosine-1-phosphate (S-1-P) lyase gene was obtained in an unbiased genetic analysis, using random insertional mutagenesis, for mutants with increased resistance to the widely used cancer chemotherapeutic drug cisplatin. This finding opened the way to extensive studies in both D. discoideum and human cells on the role and mechanism of action of the bioactive sphingolipids S-1-P and ceramide in regulating the response to chemotherapeutic drugs. These studies showed that the levels of activities of the sphingolipid metabolizing enzymes S-1-P lyase, sphingosine kinase and ceramide synthase, affect whether a cell dies or lives in the presence of specific drugs. The demonstration that multiple enzymes of this biochemical pathway were involved in regulating drug sensitivity provided new opportunities to test whether pharmacological intervention might increase sensitivity. Thus it is of considerable clinical significance that pharmacological inhibition of sphingosine kinase synergistically sensitizes cells to cisplatin, both in D. discoideum and human cells. Linkage to the p38 MAP kinase and protein kinase C (PKC) signaling pathways has been demonstrated. This work demonstrates the utility of D. discoideum as a lead genetic system to interrogate molecular mechanisms controlling the sensitivity of tumor cells to chemotherapeutic agents and for determining novel ways of increasing efficacy. The D. discoideum system could be easily adapted to a high throughput screen for novel chemotherapeutic agents.

Alexopoulos CJ, Mims CW, Blackwell M, 1996.

Introductory mycology

4th ed. John Wiley & Sons, New York. 1-869

[本文引用: 7]

Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, de Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR, 2014.

Dictyostelium, a microbial model for brain disease

Biochimica et Biophysica Acta, 1840(4):1413-1432

URL     PMID:24161926      [本文引用: 1]

Brock DA, Douglas TE, Queller DC, Strassmann JE, 2011.

Primitive agriculture in a social amoeba

Nature, 469(7330):393-396

DOI:10.1038/nature09668      URL     PMID:21248849      [本文引用: 4]

Agriculture has been a large part of the ecological success of humans. A handful of animals, notably the fungus-growing ants, termites and ambrosia beetles, have advanced agriculture that involves dispersal and seeding of food propagules, cultivation of the crop and sustainable harvesting. More primitive examples, which could be called husbandry because they involve fewer adaptations, include marine snails farming intertidal fungi and damselfish farming algae. Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication and recognition, as well as many kinds of symbiosis. Here we show that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated for, which may account for the dichotomous nature of this farming symbiosis. The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense because multigenerational benefits of farming go to already established kin groups.

Brock DA, Haselkorn TS, Garcia JR, Bashir U, Douglas TE, Galloway J, Brodie F, Queller DC, Strassmann JE, 2018.

Diversity of free-living environmental bacteria and their interactions with a bactivorous amoeba

Frontiers in Cellular and Infection Microbiology, 8:411

URL     PMID:30533398      [本文引用: 1]

Carnell MJ, Insall RH, 2011.

Actin on disease - studying the pathobiology of cell motility using Dictyostelium discoideum

Seminars in Cell & Developmental Biology, 22(1):82-88

DOI:10.1016/j.semcdb.2010.12.003      URL     PMID:21145982      [本文引用: 1]

The actin cytoskeleton in eukaryotic cells provides cell structure and organisation, and allows cells to generate forces against membranes. As such it is a central component of a variety of cellular structures involved in cell motility, cytokinesis and vesicle trafficking. In multicellular organisms these processes contribute towards embryonic development and effective functioning of cells of all types, most obviously rapidly moving cells like lymphocytes. Actin also defines and maintains the architecture of complex structures such as neuronal synapses and stereocillia, and is required for basic housekeeping tasks within the cell. It is therefore not surprising that misregulation of the actin cytoskeleton can cause a variety of disease pathologies, including compromised immunity, neurodegeneration, and cancer spread. Dictyostelium discoideum has long been used as a tool for dissecting the mechanisms by which eukaryotic cells migrate and chemotax, and recently it has gained precedence as a model organism for studying the roles of conserved pathways in disease processes. Dictyostelium's unusual lifestyle, positioned between unicellular and multicellular organisms, combined with ease of handling and strong conservation of actin regulatory machinery with higher animals, make it ideally suited for studying actin-related diseases. Here we address how research in Dictyostelium has contributed to our understanding of immune deficiencies and neurological defects in humans, and briefly discuss its future prospects for furthering our understanding of neurodegenerative disorders.

Cavender JC, Landolt JC, Romeralo M, Perrigo A, Vadell EM, Stephenson SL, 2015.

New species of Polysphondylium from Madagascar

Mycologia, 108(1):80-109

DOI:10.3852/14-313      URL     PMID:26490703      [本文引用: 1]

Two series of samples collected for isolation of dictyostelid cellular slime molds (dictyostelids) in Madagascar yielded a relatively large number of isolates of Polysphondylium. Most of these turned out to be species new to science that show varying degrees of clustering from unclustered to coremiform as well as an ability to migrate. Migratory ability (phototaxis) is a common feature of species assigned to Group 2 of the Polysphondylia and is common in the new species from Madagascar. Another common feature, clustering, appears to be a strategy for keeping fruiting bodies erect for a longer time in a climate that is relatively dry, whereas migratory ability may function seasonally when there is more rainfall. Thirteen species are described herein. Each of these is characterized by a particular set of distinguishing features, and collectively they expand our concept of the genus Polysphondylium.

Cavender JC, Vadell E, Landolt JC, Stephenson SL, 2005.

New species of small dictyostelids from the Great Smoky Mountains National Park

Mycologia, 97(2):493-512

DOI:10.3852/mycologia.97.2.493      URL     PMID:16396357      [本文引用: 1]

Ten new species of small dictyostelids, five belonging to Acytostelium (A. anastomosans, A. longisorophorum, A. magnisorum, A. serpentarium and A. singulare) and five to Dictyostelium (D. amphisporum, D. naviculare, D. oculare, D. potamoides and D. stellatum), were isolated from forest soils in the Great Smoky Mountains National Park. These species were recovered mostly from acidic soils and at higher elevations. They represent a large group of dictyostelids of small stature (<2 mm total height) on which we are beginning to accumulate more information.

Cosson P, Soldati T, 2008.

Eat, kill or die: when amoeba meets bacteria

Current Opinion in Microbiology, 11(3):271-276

DOI:10.1016/j.mib.2008.05.005      URL     [本文引用: 4]

The core function of the innate immune response, phagocytosis, did not evolve first in metazoans but rather in primitive unicellular eukaryotes. Thus, though amoebae separated from the tree leading to metazoan shortly after the divergence of plants, they share many specific functions with mammalian phagocytic cells. Dictyostelium discoideum is by far the most studied amoeba, and it is proving useful to analyze phagocytosis and intracellular killing of bacteria. Since the basic mechanisms involved appear extremely conserved, Dictyostelium provides novel insights into the function of many new gene products. Bacterial pathogenicity was certainly largely developed to resist predatory amoebae in the environment, and this accounts for the fact that a large number of bacterial virulence traits can be studied using Dictyostelium as a host. This provides a particularly powerful system to analyze the complex interactions between pathogenic bacteria and host cells, where both the Dictyostelium host and the bacteria can be manipulated genetically with relative ease.

Dinh C, Farinholt T, Hirose S, Zhuchenko O, Kuspa A, 2018.

Lectins modulate the microbiota of social amoebae

Science, 361(6400):402-406

DOI:10.1126/science.aat2058      URL     PMID:30049880      [本文引用: 1]

The social amoeba Dictyostelium discoideum maintains a microbiome during multicellular development; bacteria are carried in migrating slugs and as endosymbionts within amoebae and spores. Bacterial carriage and endosymbiosis are induced by the secreted lectin discoidin I that binds bacteria, protects them from extracellular killing, and alters their retention within amoebae. This altered handling of bacteria also occurs with bacteria coated by plant lectins and leads to DNA transfer from bacteria to amoebae. Thus, lectins alter the cellular response of D. discoideum to bacteria to establish the amoebae's microbiome. Mammalian cells can also maintain intracellular bacteria when presented with bacteria coated with lectins, so heterologous lectins may induce endosymbiosis in animals. Our results suggest that endogenous or environmental lectins may influence microbiome homeostasis across eukaryotic phylogeny.

Fan D, 2013.

mRNA differential display analysis of KAx-3 cells and RNAi-allC cells in Dictyostelium discoideum

Master Thesis, East China Normal University, Shanghai. 1-56 (in Chinese)

[本文引用: 2]

Fets L, Kay R, Velazquez F, 2010.

Dictyostelium

Current Biology, 20(23):R1008-R1010

DOI:10.1016/j.cub.2010.09.051      URL     PMID:21145012      [本文引用: 19]

Guo XH, Zhao M, Wang XY, Zhao SJ, Gao RC, Gao J, Shi LM, 2013.

The effect of starvation on migration and pseudopod of Dictyostelium discoideum

Chinese Journal of Cell Biology, 35(4):494-501 (in Chinese)

[本文引用: 3]

Jack CN, Buttery N, Adu-Oppong B, Powers M, Thompson CRL, Querller DC, Strassmann JE, 2015.

Migration in the social stage of Dictyostelium discoideum amoebae impacts competition

PeerJ, 3:e1352

URL     PMID:26528414      [本文引用: 1]

Kawakami S, Hagiwara H, 1999.

Macrocyst formation in three dictyostelid species, Dictyostelium monochasioides, Polysphondylium candidum, and P. pseudo-candidum

Mycoscience, 40:359-361

DOI:10.1007/BF02463881      URL     [本文引用: 1]

Kay RR, Jermyn KA, 1983.

A possible morphogen controlling differentiation in Dictyostelium

Nature, 303(5914):242-244

DOI:10.1038/303242a0      URL     PMID:6843672      [本文引用: 2]

The complex morphology of a higher organism is generated partly by such developmental processes as cell movement and cohesion but also by a social interaction between cells in small areas of embryonic tissue known as morphogenetic fields. The initially similar cells within such a field organize themselves and differentiate, forming a discrete spatial pattern which is remarkably independent of field size and which can regenerate after some part is removed. Although it is believed that a cell signalling system must underlie this behaviour, the putative signals--or morphogens--have so far proved elusive. Perhaps the simplest known morphogenetic field arises within the multicellular aggregate formed by developing cells of the slime mould Dictyostelium discoideum. As the amorphous aggregate transforms into a cylindrical slug, a simple pattern emerges, with prestalk cells differentiating in the anterior and prespores in the posterior. One great difficulty in identifying any morphogen has been to predict properties that could form the basis of a bioassay. However, in Dictyostelium it is almost essential that the morphogens should dictate to cells their choice of differentiation pathway. We have described previously a crude factor termed DIF which stimulates the differentiation of isolated amoebae into stalk cells. We now show that purified DIF also inhibits spore formation and so switches cells to stalk cell formation. Thus, we believe that DIF is a morphogen which regulates the choice of differentiation pathway of cells in the Dictyostelium slug.

Kubohara Y, Komachi M, Homma Y, Kikuchi H, Oshima Y, 2015.

Derivatives of Dictyostelium differentiation-inducing factors inhibit lysophosphatidic acid-estimulated migration of murine osteosarcoma LM8 cells

Biochemical and Biophysical Research Communications, 463(4):800-805

DOI:10.1016/j.bbrc.2015.06.016      URL     PMID:26056940      [本文引用: 2]

Osteosarcoma is a common metastatic bone cancer that predominantly develops in children and adolescents. Metastatic osteosarcoma remains associated with a poor prognosis; therefore, more effective anti-metastatic drugs are needed. Differentiation-inducing factor-1 (DIF-1), -2, and -3 are novel lead anti-tumor agents that were originally isolated from the cellular slime mold Dictyostelium discoideum. Here we investigated the effects of a panel of DIF derivatives on lysophosphatidic acid (LPA)-induced migration of mouse osteosarcoma LM8 cells by using a Boyden chamber assay. Some DIF derivatives such as Br-DIF-1, DIF-3(+2), and Bu-DIF-3 (5-20 muM) dose-dependently suppressed LPA-induced cell migration with associated IC50 values of 5.5, 4.6, and 4.2 muM, respectively. On the other hand, the IC50 values of Br-DIF-1, DIF-3(+2), and Bu-DIF-3 versus cell proliferation were 18.5, 7.2, and 2.0 muM, respectively, in LM8 cells, and >20, 14.8, and 4.3 muM, respectively, in mouse 3T3-L1 fibroblasts (non-transformed). Together, our results demonstrate that Br-DIF-1 in particular may be a valuable tool for the analysis of cancer cell migration, and that DIF derivatives such as DIF-3(+2) and Bu-DIF-3 are promising lead anti-tumor agents for the development of therapies that suppress osteosarcoma cell proliferation, migration, and metastasis.

Landolt JC, Stephenson SL, Cavender JC, 2006.

Distribution and ecology of dictyostelid cellular slime molds in Great Smoky Mountains National Park

Mycologia, 98(4):541-549

URL     PMID:17139847      [本文引用: 1]

Li L, Wang DL, Hou LS, 2010.

Investigation on morphogenesis of slug during Dictyostelium discoideum development

Journal of East China Normal University (Natural Science), 2010(6):109-115 (in Chinese)

[本文引用: 2]

Liang JJ, Tian L, Li L, Hou LS, 2012.

Preliminary study on the immune-like cells during Dictyostelium discoideum development

Journal of East China Normal University (Natural Science), 2012(6):96-102 (in Chinese)

[本文引用: 2]

Lima WC, Lelong E, Cosson P, 2011.

What can Dictyostelium bring to the study of Pseudomonas infections

Seminars in Cell & Developmental Biology, 22(1):77-81

DOI:10.1016/j.semcdb.2010.11.006      URL     PMID:21134479      [本文引用: 2]

Bacterial infections are complex events. They are studied in a variety of simple model systems, using mammalian or non-mammalian hosts, all of which fail to reproduce fully the situation in infected patients. Each model presents a combination of conceptual, practical, and ethical advantages and disadvantages. In this review, we detail the use of Dictyostelium discoideum amoebae as a model to study Pseudomonas aeruginosa. More specifically, our aim is to explore what this additional model system can bring to our understanding of Pseudomonas infections. The study of interactions between Dictyostelium amoebae and Pseudomonas provides a view of the selection pressures exerted by environmental predators on Pseudomonas. It also represents a unique system to assess the virulence of very large numbers of Pseudomonas strains.

Liu P, Hou J, Zou Y, Stephenson SL, Huo X, Hu X, Li Y, 2019d.

Developmental features and associated symbiont bacterial diversity in essential life cycle stages of Heterostelium colligatum

European Journal of Protistology, 68:99-107

DOI:10.1016/j.ejop.2019.02.003      URL     PMID:30802772      [本文引用: 2]

Dictyostelium discoideum is a specialized amoebozoan protist that can feed on, carry and disperse bacteria. However, the symbiont bacterial diversity in other species of dictyostelids and the diversity associated with essential life cycle stages are still unknown until now. Here, another species of dictyostelids, Heterostelium colligatum, a new record for tropical China, was isolated from the soil collected in Xishuangbanna Tropical Botanical Garden, Yunnan Province, China. We describe the complete life cycle of this species and illustrate details of spore-to-spore development. The symbiont bacterial diversity and relative abundance associated with life cycle stages of H. colligatum, including the aggregation, pseudoplasmodium, and sorocarp stages, were investigated by high throughput metagenomic techniques. H. colligatum appears to be capable of carrying different types of bacteria during its life history in addition to those used as a food resource. The dominant groups of those three stages in its life cycle were the Proteobacteria, Actinobacteria and Firmicutes. The relative abundance of the dominant phyla and shared OTUs were different for the aggregation, pseudoplasmodium, and sorocarp stages. A comparison of the symbiont bacterial assemblages associated with D. discoideum and H. colligatum indicated that different dictyostelid species carried different species of symbiont associated bacteria.

Liu P, Zou Y, Hou J, Stephenson SL, Li Y, 2019c.

Dictyostelium purpureum var. pseudosessile, a new variant of dictyostelid from tropical China

BMC Evolutionary Biology, 19:78

DOI:10.1186/s12862-019-1407-2      URL     PMID:30871462      [本文引用: 1]

BACKGROUND: Dictyostelid cellular slime molds (dictyostelids) are microscopic throughout their entire life cycle. The vegetative phase consists of single-celled amoeboid forms which live in the soil/leaf litter microhabitat of fields and forests along with animal dung, where they feed upon bacteria and other microbes, grow, and multiply until the available food supply is exhausted. When this happens, the amoeboid forms aggregate together in large numbers to form multi-celled pseudoplasmodia, which then give rise to fruiting bodies (sorocarps) that consist of supportive stalks and unwalled sori containing propagative spores. RESULTS: Dictyostelium purpureum var. pseudosessile, a new variant of dictyostelid, is described herein, based on morphological features and molecular data. This new variant was isolated from soil samples collected in two tropical areas of China. The complete spore-to-spore life cycle of this species, which required 50 h, including spore germination, myxamoebae, cell aggregation, pseudoplasmodium, and sorocarp formation, was documented. Descriptions and illustrations are provided for this species based on our collections. Data from ontogeny, morphology and phylogeny analyses (SSU) of D. purpureum var. pseudosessile confirm that it is a Group 4 species according to the newly proposed classification of dictyostelids. CONCLUSIONS: Our results suggest that the violet sori, widens at the midpoint of sorophore and simple recurved sorophore bases represent the prominent features for the new variant D. purpureum var. pseudosessile. The latter is a Group 4 species now known from two tropical areas of China where dictyostelids remains understudied.

Liu P, Zou Y, Li S, Stephenson SL, Wang Q, Li Y, 2019a.

Two new species of dictyostelid cellular slime molds in high-elevation habitats on the Qinghai-Tibet Plateau, China

Scientific Reports, 9:5

DOI:10.1038/s41598-018-37896-7      URL     PMID:30626889      [本文引用: 4]

Dictyostelid cellular slime molds (dictyostelids) are key components of soil microbes. The Qinghai-Tibet Plateau is characterized by unique and important forest types because of the considerable range in elevation which exists. During the period of 2012, 2013 and 2016, 12 species of dictyostelids were yielded from samples collected in this region, including two new species and three new records for China. Six other species were new records for this region. Ontogeny, morphology, ultrastructure and systematic molecular analyses (SSU & ITS) of D. minimum and D. multiforme confirm that they are Goup 4 new species. The ornamentation of the surface of dictyostelids' spores is the first time to be observed until now. In the SSU phylogenetic tree generated in the present study, Synstelium, not assigned to order and family before, was assigned to the clade Acytosteliaceae in the Acytosteliales firstly. To our knowledge, the study reported herein is the first investigation of dictyostelid biodiversity carried out at elevations above 2000 m. Sorocarp size, sorus size, spore length, ratio of sorus and sorophore, and ratio of sorus and spore size were positively correlated with increasing elevation and no linear correlated with forest type, according to the results of linear regression analysis.

Liu P, Zou Y, Li W, Li Y, Li X, Che S, Stephenson SL, 2019b.

Dictyostelid cellular slime molds from Christmas Island, Indian Ocean

mSphere, 4:e00133-19

DOI:10.1128/mSphere.00133-19      URL     PMID:30971444      [本文引用: 2]

Christmas Island (10 degrees 30'S, 105 degrees 40'E) is an Australian external territory located in the Indian Ocean, approximately 350 km south of Java and Sumatra and about 1,550 km northwest of the closest point on the Australian mainland. In May 2017, 20 samples of soil/humus were collected on Christmas Island and processed for dictyostelid cellular slime molds. Four species were recovered. Two of these (Dictyostelium purpureum and Cavenderia aureostipes) are common and widely distributed throughout the world, but two other species (Dictyostelium insulinativitatis sp. nov. and Dictyostelium barbarae sp. nov.) were found to be new to science and are described here.IMPORTANCE Reported here are the results of a study for dictyostelids carried out on Christmas Island, Indian Ocean. Six isolates representing four species of dictyostelid cellular slime molds were obtained from two of the four localities from which samples were collected on the island. Two of the species (Dictyostelium insulinativitatis and D. barbarae) belong to the Dictyosteliaceae, genus Dictyostelium, and are new to science. These are described based on both morphology and phylogeny. The diversity and abundance of dictyostelids on Christmas Island appear to be low, which might in part be due to the abundance of land crabs, which considerably reduce the extent of the litter layer on the forest floor.

Ludtmann MHR, Boeckeler K, Williams RSB, 2011.

Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder

Seminars in Cell & Developmental Biology, 22(1):105-113

DOI:10.1016/j.semcdb.2010.11.002      URL     PMID:21093602      [本文引用: 1]

Understanding the mechanisms of drug action has been the primary focus for pharmacological researchers, traditionally using rodent models. However, non-sentient model systems are now increasingly being used as an alternative approach to better understand drug action or targets. One of these model systems, the social amoeba Dictyostelium, enables the rapid ablation or over-expression of genes, and the subsequent use of isogenic cell culture for the analysis of cell signalling pathways in pharmacological research. The model also supports an increasingly important ethical view of research, involving the reduction, replacement and refinement of animals in biomedical research. This review outlines the use of Dictyostelium in understanding the pharmacological action of two commonly used bipolar disorder treatments (valproic acid and lithium). Both of these compounds regulate mitogen activated protein (MAP) kinase and inositol phospholipid-based signalling by unknown means. Analysis of the molecular pathways targeted by these drugs in Dictyostelium and translation of discoveries to animal systems has helped to further understand the molecular mechanisms of these bipolar disorder treatments.

Markman DW, Antolin MF, Bowen RA, Wheat WH, Woods M, Gonzalez-Juarrero M, Jackson M, 2018.

Yersinia pestis survival and replication in potential ameba reservoir

Emerging Infectious Diseases, 24(2):294-302

DOI:10.3201/eid2402.171065      URL     PMID:29350155      [本文引用: 2]

Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for >48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense.

Paillet Y, Satre M, 2010.

The biodiversity of dictyostelids in mountain forests: a case study in the French Alps

Pedobiologia, 53(5):337-341

[本文引用: 3]

Perrigo AL, Baldauf SL, Romeralo M, 2013.

Diversity of dictyostelid social amoebae in high latitude habitats of Northern Sweden

Fungal Diversity, 58:185-198

[本文引用: 3]

Perrigo AL, Romeralo M, Baldauf SL, 2012.

What’s on your boots: an investigation into the role we play in protist dispersal

Journal of Biogeography, 39(5):998-1003

[本文引用: 1]

Phillips JE, Gomer RH, 2015.

Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum

Disease Models & Mechanisms, 8(2):147-156

DOI:10.1242/dmm.018820      URL     PMID:25540127      [本文引用: 2]

Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1(-) A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function.

Raper KB, 1984.

The dictyostelids

Princeton, Princeton University Press, New Jersey. 1-453

[本文引用: 5]

Romeralo M, Baldauf S, Escalante R, 2013.

Dictyostelids: evolution, genomics and cell biology

Springer, Berlin, Heidelberg. 1-255

[本文引用: 10]

Romeralo M, Escalante R, Baldauf SL, 2012.

Evolution and diversity of dictyostelid social amoebae

Protist, 163(3):327-343

URL     PMID:22209334     

Romeralo M, Lado C, 2008.

The biodiversity of dictyostelids in a Spanish Biosphere Reserve

Nova Hedwigia, 87(1-2):247-259

[本文引用: 2]

Romeralo M, Moya-Laraño J, Lado C, 2011.

Social amoebae: environmental factors influencing their distribution and diversity across south- western Europe

Microbial Ecology, 61(1):154-165

DOI:10.1007/s00248-010-9715-5      URL     PMID:20614116     

The social amoebae (dictyostelids) are the only truly multicellular lineage within the superkingdom Amoebozoa, the sister group to Ophistokonts (Metazoa+Fungi). Despite the exceptional phylogenetic and evolutionary value of this taxon, the environmental factors that determine their distribution and diversity are largely unknown. We have applied statistical modeling to a set of data obtained from an extensive and detailed survey in the south-western of Europe (The Iberian Peninsula including Spain and Portugal) in order to estimate some of the main environmental factors influencing the distribution and diversity of dictyostelid in temperate climates. It is the first time that this methodology is applied to the study of this unique group of soil microorganisms. Our results show that a combination of climatic (temperature, water availability), physical (pH) and vegetation (species richness) factors favor dictyostelid species richness. In the Iberian Peninsula, dictyostelid diversity is highest in colder and wet environments, indicating that this group has likely diversified in relatively cold places with high levels of water availability.

Sanders D, Borys KD, Kisa F, Rakowski SA, Lozano M, Filutowicz M, 2017.

Multiple dictyostelid species destroy biofilms of Klebsiella oxytoca and other gram negative species

Protist, 168(3):311-325

DOI:10.1016/j.protis.2017.04.001      URL     PMID:28499132      [本文引用: 4]

Dictyostelids are free-living phagocytes that feed on bacteria in diverse habitats. When bacterial prey is in short supply or depleted, they undergo multicellular development culminating in the formation of dormant spores. In this work, we tested isolates representing four dictyostelid species from two genera (Dictyostelium and Polysphondylium) for the potential to feed on biofilms preformed on glass and polycarbonate surfaces. The abilities of dictyostelids were monitored for three hallmarks of activity: 1) spore germination on biofilms, 2) predation on biofilm enmeshed bacteria by phagocytic cells and 3) characteristic stages of multicellular development (streaming and fructification). We found that all dictyostelid isolates tested could feed on biofilm enmeshed bacteria produced by human and plant pathogens: Klebsiella oxytoca, Pseudomonas aeruginosa, Pseudomonas syringae, Erwinia amylovora 1189 (biofilm former) and E. amylovora 1189 Deltaams (biofilm deficient mutant). However, when dictyostelids were fed planktonic E. amylovora Deltaams the bacterial cells exhibited an increased susceptibility to predation by one of the two dictyostelid strains they were tested against. Taken together, the qualitative and quantitative data presented here suggest that dictyostelids have preferences in bacterial prey which affects their efficiency of feeding on bacterial biofilms.

Shaulsky G, Kessin RH, 2007.

The cold war of the social amoebae

Current Biology, 17(16):R684-R692

[本文引用: 4]

Sheikh S, Thulin M, Cavender JC, Escalante R, Kawakami S, Lado C, Landolt JC, Nanjundiah V, Queller DC, Strassmann JE, Spiegel FW, Stephenson SL, Vadell EM, Baldauf SL, 2018.

A new classification of the dictyostelids

Protist, 169(1):1-28

URL     PMID:29367151      [本文引用: 1]

Steinert M, 2011.

Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens

Seminars in Cell & Developmental Biology, 22(1):70-76

DOI:10.1016/j.semcdb.2010.11.003      URL     PMID:21109012      [本文引用: 1]

Dictyostelium discoideum is a haploid social soil amoeba that is an established host model for several human pathogens. The research areas presently pursued include the use of D. discoideum to identify genetic host factors determining the outcome of infections and the use as screening system for identifying bacterial virulence factors. Here we report about the Legionella pneumophila directed phagosome biogenesis and the cell-to-cell spread of Mycobacterium species. Moreover, we highlight recent insights from the host-pathogen cross-talk between D. discoideum and the pathogens Salmonella typhimurium, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cenocepacia, Vibrio cholerae and Neisseria meningitidis.

Stephenson SL, Fiore-Donno AM, Schnittler M, 2011.

Myxomycetes in soil

Soil Biology & Biochemistry, 43(11):2237-2242

[本文引用: 2]

Stephenson SL, Landolt JC, 1998.

Dictyostelid cellular slime molds in canopy soils of tropical forests

Biotropica, 30(4):657-661

[本文引用: 2]

Stephenson SL, Landolt JC, 2011.

Dictyostelids from aerial “canopy soil” microhabitats

Fungal Ecology, 4(3):191-195

[本文引用: 4]

Stephenson SL, Landolt JC, Moore DL, 1999.

Protostelids, dictyostelids, and myxomycetes in the litter microhabitat of the Luquillo Experimental Forest, Puerto Rico

Mycological Research, 103(2):209-214

[本文引用: 3]

Suthers HB, 1985.

Ground-feeding migratory songbirds as cellular slime mold distribution vectors

Oecologia, 65(4):526-530

URL     PMID:28311860      [本文引用: 2]

Thompson HJ, Strange R, Schedin PJ, 1992.

Apoptosis in the genesis and prevention of cancer

Cancer Epidemiology Biomarkers & Prevention, 1(7):597-602

[本文引用: 3]

Traub F, Hohl HR, 1976.

A new concept for the taxonomy of the family Dictyosteliaceae (cellular slime molds)

American Journal of Botany, 63(5):664-672

[本文引用: 1]

Uchikawa T, Yamamoto A, Inouye K, 2011.

Origin and function of the stalk-cell vacuole in Dictyostelium

Developmental Biology, 352(1):48-57

[本文引用: 2]

Vadell E, Cavender JC, Landolt JC, Perrigo AL, Liu P, Stephenson SL, 2018.

Five new species of dictyostelid social amoebae (Amoebozoa) from Thailand

BMC Evolutionary Biology, 18(1):198

DOI:10.1186/s12862-018-1328-5      URL     PMID:30577752      [本文引用: 1]

BACKGROUND: Dictyostelid cellular slime molds (dictyostelids) are common inhabitants of the soil and leaf litter layer of fields and forests, along with animal dung, where they feed mostly on bacteria. However, reports on the species diversity of dictyostelids in South Asia, particularly Thailand, are limited. The research reported in this paper was carried out to increase our knowledge of the species diversity of this group of organisms in northern Thailand. RESULTS: Forty soil samples were collected at four localities in northern Thailand to assess the species richness of dictyostelids. These samples yielded five dictyostelid isolates that were not morphologically consistent with any described species. Based on molecular signatures, all five of these isolates were assigned to the family Cavenderiaceae, genus Cavenderia. All five share a number of morphological similarities with other known species from this family. The new taxa differ from previously described species primarily in the size and complexity of their fruiting bodies (sorocarps). This paper describes these new species (Cavenderia aureostabilis, C. bhumiboliana, C. protodigitata, C. pseudoaureostipes, and C. subdiscoidea) based on a combination of morphological characteristics and their phylogenetic positions. CONCLUSIONS: At least 15 taxa of dictyostelids were obtained from the four localities in northern Thailand, which indicates the high level of species diversity in this region. Five species were found to be new to science. These belong to the family Cavenderiaceae, genus Cavenderia, and were described based on both morphology and phylogeny.

Whittingham WF, Raper KB, 1960.

Non-viability of stalk cells in Dictyostelium

Proceedings of the National Academy of Sciences, 46(5):642-649

[本文引用: 3]

Zhou KM, Guo RZ, 2010.

Expression of cyclins in malignant tumors

Medical Recapitulate, 16(4):533-536 (in Chinese)

[本文引用: 1]

Zhou YH, Liu P, Li Y, 2019.

Progress on the chemical components and pharmacological activities of dictyostelid cellular slime molds

Journal of Fungal Research, 17(1):57-62 (in Chinese)

[本文引用: 1]

Zhou ZK, Luo Q, Hou LS, 2014.

Cell cycle abnormality in Dictyostelium discoideum allC mutant cell line

Chinese Journal of Zoology, 49(1):57-62 (in Chinese)

[本文引用: 2]

/