中文  |  English

菌物学报, 2021, 40(5): 1216-1231 doi: 10.13346/j.mycosystema.200323

简报

篮状菌属的四个中国新记录种

单夏男,1, 徐可心2, 阮永明,,1,*, 王龙,,3,*

Four species of Talaromyces new to China

SHAN Xia-Nan,1, XU Ke-Xin2, RUAN Yong-Ming,,1,*, WANG Long,,3,*

责任编辑: 王敏

收稿日期: 2020-10-19   接受日期: 2020-11-23   网络出版日期: 2021-05-22

基金资助: 国家自然科学基金.  31750001
中国科学院前沿科学重点研究项目.  QYZDY-SSW-SMC029
科技部科技基础资源调查专项.  2019FY100700

Corresponding authors: * E-mail: ruanym@zjnu.cn, wl_dgk@163.com;ORCID: SHAN Xia-Nan (0000-0002-1517-8843), RUAN Yong-Ming (0000-0002-6361-4072), WANG Long (0000-0001-6774-6999)

Received: 2020-10-19   Accepted: 2020-11-23   Online: 2021-05-22

Fund supported: National Natural Science Foundation of China.  31750001
Key Research Program of Frontier Science, Chinese Academy of Sciences.  QYZDY-SSW-SMC029
National Project on Scientific Groundwork, Ministry of Science and Technology of the People’s Republic of China.  2019FY100700

摘要

在系统调查我国篮状菌属Talaromyces物种资源的工作中,分离得到了10株篮状菌。基于形态学和BenACaM及rDNA ITS1-5.8S-ITS2序列的分子种系学分析确定它们分属于6个种,即艾米斯托克篮状菌T. amestolkiae、暗玫瑰篮状菌T. atroroseus、暗绿篮状菌T. fuscoviridis、肯德里克篮状菌T. kendrickii、斯托尔篮状菌T. stollii和多样篮状菌T. versatilis,其中后4种为篮状菌组section Talaromyces的我国新记录种。T. fuscoviridis生长适中,在MEA培养基背面呈特征性的暗绿色,形成绒兼短絮状菌落,产生稀疏的灰色分生孢子,其帚状枝双轮生兼单轮生,瓶梗为安瓿形;T. kendrickii生长适中,产生典型绒状菌落和大量深绿色分生孢子,其帚状枝双轮生兼不规则生,排列紧密,瓶梗为安瓿形;T. stollii生长迅速,形成绒状兼絮状菌落并产生大量灰绿色分生孢子,其帚状枝双轮生兼三轮生,排列紧密,瓶梗为典型披针形;T. versatilis生长迅速,形成短絮状兼绳状菌落,产生脏粉色菌丝体和稀疏的灰色分生孢子,其帚状枝双轮生兼单轮生,排列不紧密,瓶梗为安瓿形。这4个新记录种的发现进一步丰富了我国篮状菌属的物种资源。

关键词: 分子系统学 ; 青霉 ; 土壤真菌 ; 真菌分类学

Abstract

In the survey of Talaromyces species diversity in China, ten isolates were identified as T. amestolkiae, T. atroroseus, T. fuscoviridis, T. kendrickii, T. stollii and T. versatilis, respectively, according to morphological characters and the combined phylogenetic analysis of the β-tubulin gene, calmodulin gene and rDNA ITS1-5.8S-ITS2 sequences. Among the six species, the latter four species belonging to section Talaromyces are new to China. T. fuscoviridis grows moderately, presenting the characteristic dark-green colony reverse on MEA, forming velutinous to compact floccose colonies with sparse grey-coloured sporulation and biverticillate and monoverticillate penicilli with ampuliform phialides; T. kendrickii also grows moderately, forming typical velutinous colonies and abundant dull-green sporulation and compact biverticillate and irregular penicilli with ampuliform phialides; T. stollii grows fast and forms velutinous and floccose colonies with abundant grey-green sporulation, bearing compact biverticillate and terverticillate penicilli with typical acerose phialides; T. versatilis grows fast and forms floccose and funiculous colonies with dirty pinkish mycelium and sparse greyish sporulation, and produces loosely positioned biverticillate and monoverticillate penicilli.

Keywords: molecular phylogenetics ; Penicillium ; soil fungi ; fungal taxonomy

PDF (880KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

单夏男, 徐可心, 阮永明, 王龙. 篮状菌属的四个中国新记录种. 菌物学报[J], 2021, 40(5): 1216-1231 doi:10.13346/j.mycosystema.200323

SHAN Xia-Nan, XU Ke-Xin, RUAN Yong-Ming, WANG Long. Four species of Talaromyces new to China. Mycosystema[J], 2021, 40(5): 1216-1231 doi:10.13346/j.mycosystema.200323

篮状菌属Talaromyces C.R. Benj.隶属于真菌界Fungi,子囊菌门Ascomycota,散囊菌纲Eurotiomycetes,散囊菌目Eurotiales,发菌科Trichocomaceae。篮状菌属物种无性阶段的繁殖结构为分生孢子梗(conidiophore),通常产生对称双轮生帚状枝(symmetrical biverticillate penicillus),其产孢细胞称为瓶梗(phialide),多为披针形(acerose),有些为安瓿形(ampuliform)。篮状菌属物种若产生有性阶段则其子囊果为裸囊壳(gymnothecium),壳内产生不定数目的球形至椭球形子囊,每个子囊含8个子囊孢子,无规则分散于子囊中。

篮状菌最初被当做青霉Penicillium Link来研究,如在Raper & Thom(1949)出版的《青霉手册》(《A Manual of Penicillia》)中,不论是否产生有性阶段而按照帚状枝分枝形态将青霉划分为4个组(section)和41个系(series),其中篮状菌被划分在青霉双轮对称组Penicillium section Biverticillata-Symmetrica Thom中。Benjamin(1955)依据当时的国际植物命名法规(International Code of Botanical Nomenclature,ICBN),给这类菌提出了一个有性型的属名,即篮状菌属Talaromyces,模式种为蠕形青霉P. vermiculatum Dangeard,即蠕形篮状菌T. vermiculatus (Dangeard) C.R. Benjamin。Pitt(1979)根据双重命名法(dual nomenclature),分别处理无性型和有性型,将只发现无性型的种归入青霉属,进而又将其分为4个亚属subgenus,即曲霉状亚属subgenus Aspergilloides Pitt、叉状亚属subgenus Furcatum Pitt、青霉亚属subgenus Penicillium和双轮亚属subgenus Biverticillium Pitt;将发现有性和/或无性阶段的种分别归入正青霉属Eupenicillium (F. Ludw.)和篮状菌属。其中只发现无性型的且具有Penicillium section Biverticillata-Symmetrica分类学性状的种被放在subgenus Biverticillium Pitt中,将产生裸囊壳的种放在篮状菌属中。后来的分子种系发生学(phylogenetics,Gr. Phyle=tribe,genesis=birth)的研究,如根据rDNA ITS1-5.8S- ITS2(ITS)、β-微管蛋白基因(β-tubulin gene,BenA)和钙调蛋白基因(calmodulin gene,CaM)序列的分析显示双轮亚属的种与其他亚属的青霉种分属不同的演化支(clade)而与篮状菌属处于同一个演化支(clade)(Wang & Zhuang 2007;Houbraken & Samson 2011;Samson et al. 2011)。2012年的《国际藻类、真菌和植物命名法规》(墨尔本法规)[International Code of Nomenclature for algae, fungi, and plants (Melbourne Code)]取消了真菌的双重命名系统(dual naming system),明确规定一种真菌只有一个名称(one fungus,one name)。因此,Talaromyces成为上述青霉属双轮亚属和篮状菌属物种的合法属名(McNeill et al. 2012)。

Samson et al.(2011)承认了71个Talaromyces物种,Yilmaz et al.(2014)根据BenACaM、ITS和Rpb2(RNA多聚酶Ⅱ第二大亚基,DNA-dependent RNA polymerase II the second largest subunit)将已经发现的88种篮状菌分为7个组:杆孢篮状菌组section Bacillispori 6种、螺旋篮状菌组section Helici 7种、岛篮状菌组section Islandici 15种、紫篮状菌组section Purpurei 10种、近膨篮状菌组section Subinflati 2种、篮状菌组section Talaromyces 36种和糙孢篮状菌组section Trachispermi 12种。最近Sun et al.(2020)又增加了一个组,即细梗篮状菌组section Tenues 1种。篮状菌组是篮状菌属的最大组,截至本文投稿时全球该组已经报道72个种,我国报道了26个种(Tzean et al. 1994;孔华忠和王龙 2007;Chen et al. 2016;Wang et al. 2016a,2016b;Wang et al. 2017;Su & Niu 2018;Jiang et al. 2018;陈晗等2020;孙剑秋等2020;Sun et al. 2020;王龙等 2020)。在系统调查我国篮状菌物种资源并编研“中国篮状菌志”的研究工作中,我们从5个省区的土壤中分离得到10株篮状菌,经鉴定分属6个种,即艾米斯托克篮状菌T. amestolkiae N. Yilmaz, Houbraken, Frisvad & Samson、暗玫瑰篮状菌T. atroroseus N. Yilmaz, Frisvad, Houbraken & Samson、暗绿篮状菌T. fuscoviridis Yilmaz, Visagie & Samson、肯德里克篮状菌T. kendrickii Yilmaz, Visagie, Seifert & Frisvad、斯托尔篮状菌T. stollii N. Yilmaz, Houbraken, Frisvad & Samson和多样篮状菌T. versatilis Bridge & Buddie。其中T. atroroseus属于section Trachispermi,其余5种均属于section Talaromyces,除T. amestolkiae外,T. fuscoviridisT. kendrickiiT. stolliiT. versatilis为我国新记录种。

1 材料与方法

1.1 样品采集和分离

土壤样品采自我国贵州、湖南、黑龙江、江西、北京等地,取表层土下面富含腐殖质的土壤约25g置于无菌塑料袋中封好。样品分离采用改进的Malloch(1981)倍比稀释涂布平皿法(王龙等2020),分离得到的10株篮状菌,经鉴定后将每个种的代表菌株保存于中国普通微生物菌种保藏中心(CGMCC)(表1)。

表1   用于分子种系学分析的篮状菌组48种58株菌及其3个遗传标记(以暗玫瑰篮状菌为外群)

Table 1  The 58 strains of 48 species from sect. Talaromyces included in the phylogenetic analyses and their three genetic markers, with T. atroroseus as the outgroup

物种
Species
菌株
Strainsa, b
来源
Sources
遗传标记 Genetic markers
BenACaMITS
T. aculeatusNRRL 2129T=
CBS 289.48
美国织物
Textile, USA
KF741929KF741975KF741995
T. adpressusCGMCC 3.18211T=
CBS 140620
中国北京室内空气
Indoor air, Beijing, China
KU866844KU866741KU866657
T. amestolkiaeCBS 132696T=
DTO 179F5
南非开普敦室内尘土
House dust, Cape Town, South Africa
JX315623KF741937JX315660
3.15821=14049中国贵州省黄果树瀑布景区土壤
Soil, Huangguoshu Waterfall, Guizhou, China
MT892944MT892950MT883346
12686中国浙江农业大学茶园土壤
Soil, field of Camellia sinensis, Zhejiang
Agricultural University, China
MT892943MT892949MT883345
HL72中国黑龙江五大连池土壤
Soil, Wudalianchi, Heilongjiang, China
MT892945MT892951MT883347
T. angelicusKACC 46611T韩国平昌干燥当归根
Dried root of Angelica gigas, Pyeong chang,
Gangwon-do, Republic of Korea
KF183640KJ885259KF183638
T. apiculatusCBS 312.59T日本土壤
Soil, Japan
KF741916KF741950JN899375
T. argentinensisNRRL 28750T加纳塔佛土壤
Soil, Tafo, Ghana
MH792917MH792981MH793045
T. australisCBS 137102T澳大利亚牧场土壤
Soil under pasture, Australia
KF741922KF741971KF741991
T. beijingensisCGMCC 3.18200T=
CBS 140617
中国北京室内空气
Indoor air, Beijing, China
KU866837KU866733KU866649
T. californicusNRRL 58168T美国加利福尼亚空气
Air, California, USA
MH792928MH792992MH793056
T. cnidiiKACC 46617T韩国堤川干燥川芎根
Dried roots of Cnidium officinale, Jecheon,
Chungbuk, Republic of Korea
KF183641KJ885266KF183639
T. derxiiCBS 412.89T日本仓敷耕作土壤
Cultivated soil, Kurashiki, Japan
JX494306KF741959JN899327
T. dimorphusAS3.15692T中国海南尖峰岭土壤
Soil, Jianfengling Forest Park, Hainan, China
KY007111KY007103KY007095
T. duclauxiiCBS 322.48T法国帆布
Canvas, France
JX091384KF741955JN899342
T. euchlorocarpiusDTO 176I3T日本横滨土壤
Soil, Yokohama, Japan
KJ865733KJ885271AB176617
T. flavovirensCBS 102801T西班牙赫罗纳栓皮栎落叶
Quercus suber leaf litter, Selva de
Mar, Gerona, Catalonia, Spain
JX091376KF741933JN899392
T. flavusCBS 310.38T新西兰未知来源
Unknown source, New Zealand
JX494302KF741949JN899360
T. francoaeCBS 113134T哥伦比亚亚马逊厚隔香属植物落叶
Leaf litter in Pseudomonotes tropenbosii
forest in Peña Roja, Dept. Amazonas, Colombia
KX011489KX011501KX011510
T. funiculosusCBS 272.86T印度葫芦
Lagenaria vulgaris, India
JX091383KF741945JN899377
T. fuscoviridisCBS 193.69T尼德兰土壤
Soil, the Netherlands
KF741912KF741942KF741979
AS3.15876=
JX6-6
中国江西庐山土壤
Soil, Lushan, Jiangxi, China
MK837943MK837951MK837959
T. fusiformisCGMCC 3.18210T=
CBS 140637
中国北京室内空气
Indoor air, Beijing, China
KU866843KU866740KU866656
T. galapagensisCBS 751.74T=
NRRL 13068
厄瓜多尔龟岛美登木下土壤
Soil beneath Maytenus obovata,
Galapagos Island, Ecuador
JX091388KF741966JN899358
T. intermediusCBS 152.65T英国诺丁汉沼泽土壤
Alluvial pasture and swamp soil, Nottingham, UK
JX091387KJ885290JN899332
T. kendrickiiCBS 136666T=
IBT13593
加拿大森林土壤
Forest soil, Canada
KF741921KF741967KF741987
CBS 136669=
IBT14128
尼日利亚土壤
Soil, Nigeria
KF741925KF741968KF741988
3.15849=HL320中国黑龙江伊春凉水自然保护区土壤
Soil, Liangshui Nature Reserve, Yichun,
Heilongjiang, China
MT892947MT892953MT883349
3.15852=AC151中国北京顺义土壤
Soil, Shunyi, Beijing, China
MT892948MT892954MT883350
T. lentulusAS3.15689T中国山东东营土壤
Soil, Dongying, Shandong, China
KY007104KY007096KY007088
T. lianiCBS 225.66T=
NRRL 3380
中国土壤
Soil, China
JX091380KJ885257JN899395
T. louisianensisNRRL 35823T美国路易斯安娜空气
Air, Louisiana, USA
MH792924MH792988MH793052
T. macrosporusCBS 317.63T南非斯泰伦博斯苹果汁
Apple juice, Stellenbosch, South Africa
JX091382KF741952JN899333
T. maeAS3.15690T中国上海东平国家森林公园土壤
Soil, Dongping National Forest
Park, Shanghai, China
KY007106KY007098KY007090
T. mangshanicusAS3.18013T中国湖南郴州莽山国家森林公园土壤
Soil, Mangshan National Forest Park,
Chenzhou, Hunan, China
KX447530KX447528KX447531
T. marneffeiCBS 388.87T越南竹鼠
Bamboo rat (Rhizomys sinensis), Vietnam
JX091389KF741958JN899344
T. panamensisCBS 128.89T巴拿马巴罗科罗拉多岛土壤
Soil, Barro Colorado Island, Panama
HQ156948KF741936JN899362
T. pinophilusCBS 631.66T法国聚氯乙烯
PVC, France
JX091381KF741964JN899382
T. primulinusCBS 321.48T美国未知来源
Unknown source, USA
JX494305KF741954JN899317
T. purpureogenusCBS 286.36T日本米曲霉寄生菌
Parasitic on a culture of
Aspergillus oryzae, Japan
JX315639KF741947JN899372
T. qiiAS3.15414T=
CBS 139515
中国西藏墨脱土壤
Soil, Motuo County, Tibet, China
KP765380KP765382KP765384
T. rapidusCBS 142382T美国俄亥俄人肺泡灌洗液
Human bronchoalveolar lavage, Ohio, USA
LT559087LT795600LT558970
T. ruberCBS 132704T英国航空器油箱
Aircraft fuel tank, UK
JX315629KF741938JX315662
T. rubicundusCBS 342.59T美国乔治亚土壤
Soil, Georgia, USA
JX494309KF741956JN899384
T. sayulitensisNRRL 62185T美国南卡罗莱纳玉米
Corn, South Carolina, USA
MH792950MH793014MH793077
T. siamensisCBS 475.88T泰国南邦府森林土壤
Forest soil, Lampang, Thailand
JX091379KF741960JN899385
T. stolliiCBS 408.93T尼德兰艾滋病人
AIDS patient, the Netherlands
JX315633JX315646JX315674
AS3.16017=
JN1-1
中国山西阳泉孟县腐殖酸
Humic acid, Mengxian, Yangquan,
Shanxi, China
MW025969MW053682MW053684
HH1-1中国黑龙江黑河锦河峡谷土壤
Soil, Jinhe Grand Canyon, Heihe,
Heilongjiang, China
MW025968MW053681MW053683
T. thailandensisCBS 133147T泰国土壤
Soil, Thailand
JX494294KF741940JX898041
T. veerkampiiCBS 500.78T哥伦比亚维拉维森西奥土壤
Soil, Dep. de Meta, Municipio
de Villavicencio, Colombia
KF741918KF741961KF741984
T. verruculosusNRRL 1050T=
CBS 388.48
美国德克萨斯土壤
Soil, Texas, USA
KF741928KF741974KF741994
T. versatilisIMI 134755T=
CBS 140377
英国锡莱研究所来源未知
Unknown source, Shirley Institute, UK
KC992270MN969319
(DTO 326-B7)
KC962111
AS3.15853=
3708
中国未知来源
Unknown source, China
MK837944MK837952MK837960
T. viridisCBS 114.72T=
NRRL 5575
澳大利亚土壤
Soil, Australia
JX494310KF741935AF285782
T. viridulusCBS 252.87T澳大利亚新南威尔士土壤
Soil, New South Wales, Australia
JX091385KF741943JN899314
T. xishaensisAS3.17995T中国海南三沙永兴岛土壤
Soil, Yongxing Island, Sansha
Hainan, China
KU644581KU644582KU644580
T. atroroseusHR11-1中国北京怀柔皇后镇土壤
Soil, Queen’s Town, Huairou District,
Beijing, China
MT892946MT892952MT883348

注:a模式菌株用“T”标出,b新记录种菌株和序列用粗体表示

Note: a Ex-type strains are indicated with “T”, b strains and sequences of the new records are indicated in boldface.

新窗口打开| 下载CSV


1.2 形态学研究方法

培养性状研究采用查氏酵母精琼脂(Czapek yeast autolysate agar,CYA)分别于25℃、37℃、5℃和麦芽精琼脂(5% malt extract agar,MEA)于25℃培养7d后观察、描述和照相。菌落颜色的描述参照Ridgway(1912)的色谱。显微结构研究采用在MEA 25℃培养7d的产孢结构做显微镜载片观察、照相和描述(Pitt 1979;Samson et al. 2010)。

1.3 PCR扩增和测序

核基因组DNA的提取参考Wang & Zhuang(2004)的方法,扩增BenACaM和ITS的引物分别参考Glass & Donaldson(1995)Wang(2012)White et al.(1990)的方法。PCR扩增反应在无菌的0.2mL薄壁平盖Eppendorf管中进行,20µL反应体系含有基因组DNA 1.0µL,正向和反向引物(10µmol/L)各0.5µL,双蒸水8µL,2×PCR扩增缓冲液(0.05U/µL Taq polymerase,4mmol/L MgCl2,0.4mmol/L dNTPs)10µL。PCR程序为94℃ 3min,然后共进行30个温度循环:94℃变性30s,50℃退火30s,72℃延伸30s,最后在72℃延伸5min。PCR产物各取5µL与5µL的100bp DNA ladder用2.0%的琼脂糖凝胶(agarose gel)在80V电压下电泳15min,再用0.5g/mL的溴乙锭(ehidium bromide,EB)染色10min后在波长365和254nm的紫外灯下观察。显示单一、明亮扩增区段长度条带的PCR扩增产物(BenA约400bp,CaM约700bp,ITS约600bp)用ABI3730(Applied Biosystems,Drive Foster City,CA,USA)进行双向直通测序。

1.4 分子种系学分析

原始序列用生物学软件Bioedit 7.0.9(1999)进行人工校对、编辑,得到准确无误的全区段序列后提交到GenBank并用于种系学分析。选择篮状菌组48个物种的模式菌株和代表菌株49株以及本研究的10株共59株篮状菌的BenACaM和ITS序列链接成组合序列,其中以糙孢篮状菌组的T. atroroseus HR11-1作为外群(表1),用MEGA 6(2013)进行对位排列(alignment)并编辑修剪后做成序列矩阵,然后用最大似然法(maximum likelihood,ML)分析并采用自展法(bootstrap)进行1 000次重复评估各分支的可靠性,其中空格(gap)选择“partial deletion”(Hall 2013);另外,该序列矩阵还采用贝叶斯法(bayes inference,BI)对各分支进行后验概率分析(posterior probability,PP)(Ronquist et al. 2012)。

2 结果与分析

BenA-CaM-ITS的组合序列矩阵共1 261个位点(site),分子种系学分析显示菌株AS3.15876=JX6-6与T. fuscoviridis的模式菌株CBS 193.69同在一个分支,支持率为92%,BI后验概率为0.95;菌株AS3.15849=HL320和AS3.15852=AC151与T. kendrickii的模式菌株CBS 136666同在一个分支,支持率为100%,BI后验概率为1;菌株AS3.16017=JN1-1和HH1-1与T. stollii的模式菌株CBS 408.93同在一个分支,支持率为100%,BI后验概率为1;菌株AS3.15853=3708与T. versatilis的菌株IMI 134755同在一个分支,支持率为100%,BI后验概率为1。结合形态学和分子种系学分析确认这些菌株的鉴定准确无误,参考我国已报道的篮状菌物种,确定这4个种均为我国新记录种(图1-图5)。

图1

图1   基于BenA-CaM-ITS的ML系统发育树

BI后验概率≥0.95和支持率≥70%标注在分支节点处,T表示模式菌株,粗体表示新记录种. 标尺=0.05每核苷酸替代率

Fig. 1   ML phylogram inferred from concatenated BenA-CaM-ITS partial sequences.

Posterior probabilities of BI over 0.95 and percentages over 70% derived from 1 000 replicates are indicated at the nodes, T indicates ex-type strains, the species new to China are indicated in boldface. Bar=0.05 substitutions per nucleotide position.


图2

图2   暗绿篮状菌Talaromyces fuscoviridis AS3.15876的形态学性状

A,B:在CYA和MEA上25℃、7d的菌落;C-F:分生孢子梗;G:分生孢子. 标尺=10μm

Fig. 2   Morphology of Talaromyces fuscoviridis AS3.15876.

A, B: Colonies on CYA and MEA at 25°C after 7d; C-F: Conidiophores; G: Conidia. Scale bars=10μm.


图3

图3   肯德里克篮状菌Talaromyces kendrickii AS3.15849的形态学性状

A,B:在CYA和MEA上25℃、7d的菌落;C-E:分生孢子梗;F:分生孢子. 标尺=10μm

Fig. 3   Morphology of Talaromyces kendrickii AS3.15849.

A, B: Colonies on CYA and MEA at 25°C after 7d; C-E: Conidiophores; F: Conidia. Scale bars=10μm.


图4

图4   斯托尔篮状菌Talaromyces stollii AS3.16017的形态学性状

A,B:在CYA和MEA上25℃、7d的菌落;C-E:分生孢子梗;F:分生孢子. 标尺=10μm

Fig. 4   Morphology of Talaromyces stollii AS3.16017.

A, B: Colonies on CYA and MEA at 25°C after 7d; C-E: Conidiophores; F: Conidia. Scale bars=10μm.


图5

图5   多样篮状菌Talaromyces versatilis AS3.15853的形态学性状

A,B:在CYA和MEA上25℃、7d的菌落;C-F:分生孢子梗;G:菌丝绳;H:分生孢子. 标尺=10μm

Fig. 5   Morphology of Talaromyces versatilis AS3.15853.

A, B: Colonies on CYA and MEA at 25°C after 7d; C-F: Conidiophores; G: The hyphal funiculus; F: Conidia. Scale bars=10μm.


2.1 暗绿篮状菌 图2

Talaromyces fuscoviridis Visagie, N. Yilmaz & Samson, Mycoscience 56: 492, 2015.

在查氏酵母精琼脂(CYA)上25℃、7d,菌落直径43-45mm,较薄,具较多辐射状沟纹,边缘完整;质地绒状兼短绳状;分生孢子结构无;菌丝体白色夹杂淡黄色;渗出液少量,呈珊瑚红色coral pink(R. Pl. XIII)或无色;可溶性色素无;菌落背面浅黄色,近于pinkish buff(R. Pl. XXIX)。

在麦芽精琼脂(MEA)上25℃、7d,菌落直径40-41mm,稍厚,中央凹陷,边缘于培养基内,完整;质地短絮状兼绳状;分生孢子结构稀少,近于淡烟灰色pale smoke gray(R. Pl. XLVI);菌丝体白色夹杂浅黄色,近于cream color(R. Pl. XVI);渗出液无;可溶性色素无;菌落背面呈暗绿色,近于darkyellowish green to ackermann’s green(R. Pl. XVIII)。

在CYA上37℃、7d,菌落直径约12mm,稍厚,无规则沟纹少,边缘完整;质地绒状;分生孢子结构无;菌丝呈脏粉色,近于pale congo pink(R. Pl. XXVIII);渗出液无;可溶性色素多,深粉红色,近于old rose(R. Pl. XIII);菌落背面呈深红色,近于Nopal red(R. Pl. I)。

在CYA上5℃、7d,未生长。

分生孢子梗产生于表面菌丝和气生菌丝,孢梗茎50-150×2.5-3μm,壁光滑;帚状枝双轮生兼单轮生;梗基每轮2-4个,排列紧密,10-11×2.5-3μm;瓶梗安瓿形,排列不紧密,每轮2-4个,10-11×2.5-3μm;分生孢子椭球形至近球形,3-3.5(-4)μm,壁厚,光滑至稍粗糙。

分布和基物:江西庐山土壤(JX6-6= AS3.15876)。

注:本种生长较快,MEA菌落背面呈特征性暗绿色,产生短絮状兼绳状菌落,分生孢子稀疏,灰绿色,在37℃生长局限;帚状枝双轮生兼单轮生,排列紧密,分生孢子球形至近球形,壁厚,光滑。

2.2 肯德里克篮状菌 图3

Talaromyces kendrickii Visagie, N. Yilmaz, Seifert & Frisvad, Mycoscience 56: 493, 2015.

在查氏酵母精琼脂(CYA)上25℃、7d,菌落直径22-25mm,较薄,平坦,边缘于培养基内,整齐;质地绒状;分生孢子大量,灰橄榄色grayish olive(Ridgway Pl. XLVI);菌丝体在边缘呈白色,在近边呈硫磺色sulphur yellow(Ridgway Pl. V);渗出液无;可溶性色素无;菌落背面呈烧土褐色burnt sienna(Ridgway Pl. III)。

在麦芽精琼脂(MEA)上25℃、7d,菌落直径35-38mm,较薄,平坦,边缘于培养基内,整齐;质地绒状;分生孢子大量,草绿色grass green(Ridgway Pl. VI);菌丝体呈浅绿黄色light viridine yellow(Ridgway Pl. V);渗出液无;可溶性色素无;菌落背面呈赭色,但中央呈淡橙红色。

在CYA上37℃、7d,未生长。

在CYA上5℃、7d,未生长。

分生孢子梗产生于表面菌丝,孢梗茎200-400×3-4μm,壁光滑;帚状枝双轮生、单轮生兼不规则生;梗基每轮4-8个,排列

不紧密,10-15×2.5-4μm;瓶梗安瓿形,排列不紧密,每轮4-6个,10-12×2-3μm;分生孢子近球形至椭球形,2.5-3.5×2-3μm,壁粗糙。

分布和基物:黑龙江伊春凉水自然保护区土壤(HL320=AS3.15849);北京顺义土壤(AC151= AS3.15852)。

注:该种生长适中,产生绒状菌落和大量草绿色分生孢子,帚状枝双轮生和不规则生,排列不紧密,瓶梗安瓿形,分生孢子近球形至椭球形,壁粗糙。

2.3 斯托尔篮状菌 图4

Talaromyces stollii N. Yilmaz, Houbraken, Frisvad & Samson, Persoonia 29: 52, 2012.

在查氏酵母精琼脂(CYA)上25℃、7d,菌落直径39-42mm,较薄,平坦,边缘于培养基内,流苏状;质地绒状,表面覆盖大量絮状菌丝;分生孢子大量,豆绿色pea green (R. Pl. XLVII);菌丝体在边缘呈白色,其余夹杂淡橄榄红色olive lake(R. Pl. XVI);渗出液无;可溶性色素无;菌落背面中央呈红色,边缘颜色变浅至淡赭鲑色pale ochraceous- salmon(R. Pl. XV)。

在麦芽精琼脂(MEA)上25℃、7d,菌落直径47-49mm,稍厚,平坦,边缘于培养基内,流苏状;质地绒状且表面覆盖大量白色絮状菌丝;分生孢子大量,豆绿色至鼠尾草绿色pea green to sage green(R. Pl. XLVII);菌丝体呈白色;渗出液无;可溶性色素无;菌落背面呈赭色。

在CYA上37℃、7d,菌落直径28-30mm,类似于CYA上25℃、7d。

在CYA上4℃、7d,不生长。

分生孢子梗产生于基质,孢梗茎100-150 (-200)×3-5μm,壁光滑;帚状枝双轮生兼三轮生;梗基每轮3-6个,排列紧密,10-14× 2.5-3.5μm;瓶梗披针形,排列紧密,每轮4-6个,11-15×2-3μm;分生孢子椭球形,2.5-4×2-3μm,壁光滑。

分布和基物:黑龙江黑河锦河大峡谷(HH1-1),山西阳泉孟县腐殖酸(JN1-1= AS3.16017)。

注:该种生长很快,在37℃生长正常,形成绒状兼絮状菌落,分生孢子大量,豆绿色,帚状枝双轮生和三轮生,排列紧密,瓶梗典型披针形,分生孢子椭球形,壁光滑。

2.4 多样篮状菌 图5

Talaromyces versatilis P.F. Cannon, Bridge & Buddie, Index Fungorum 26: 1, 2013.

在查氏酵母精琼脂(CYA)上25℃、7d,菌落直径约50mm,较薄,辐射状及同心环状沟纹少量,边缘于培养基内,完整;质地绒状,中部浸润状,呈砖红色;分生孢子结构无;菌丝体在边缘呈白色,在中部夹杂砖红色;砖红色渗出液大量,浸润于菌落中部,使得中部菌丝体呈砖红色;可溶性色素无;反面棕红色。

在麦芽精琼脂(MEA)上25℃、7d,菌落直径50-52mm,较薄,平坦,边缘于培养基内,完整;质地短絮状,表面覆盖菌丝绳长约3mm;分生孢子结构稀少,浅灰橄榄色light grayish olive (R. Pl. XLVI);菌丝体脏粉色,近于pinkish vinaceous(R. Pl. XXVII);渗出液无色;可溶性色素无;反面粉红色,近于orange vinaceous(R. Pl. XXVII)。

在CYA上37℃、7d,菌落直径约20-21mm,其他性状类似于CYA 25℃、7d。

在CYA上5℃、7d,未生长。

分生孢子梗产生气生菌丝和绳状菌丝,孢梗茎30-60(-120)×2-3μm,壁光滑;帚状枝双轮生兼单轮生;梗基每轮2-6个,排列不紧密,9-15×2-3μm;瓶梗安瓿形至圆柱形,排列紧密,每轮2-4个,8-12×2-3μm;分生孢子近球形,2.5-3×2-3μm,壁光滑。

分布和基物:安徽黄山土壤(AS3.15853= 3708)。

注:生长较快,形成短絮状兼绳状菌落,在37℃生长良好,分生孢子浅灰绿色,菌丝体呈砖红色至脏粉色,分生孢子梗较细,帚状枝双轮生兼单轮生,排列不紧密,瓶梗安瓿形,分生孢子近球形至椭球形,壁光滑。

3 讨论

Talaromyces fuscoviridis属于稀有种(rare species),但我们推测其分布应该比较广泛,因为该种在2015年建立后到目前GenBank只记录了6个株菌的序列,其在欧洲、亚洲、北美洲和南美洲均有报道(Peterson & Jurjevic 2019)。可能因为该物种在土壤真菌群落中较少而不容易分离到,本研究采用改进的土壤样品稀释涂布平皿法(王龙等2020)成功分离到该物种。我国的T. fuscoviridis菌株AS3.15876与模式菌株CBS 193.69在菌落形态上有一定差别,比如,该菌株生长快速,分生孢子稀疏,而模式菌株生长较慢,分生孢子适量。但菌株AS3.15876在MEA背面呈现与模式菌株完全相同的特征性暗绿色,而且它们的显微结构几乎完全相同,比如其分生孢子梗均发生于表面菌丝和气生菌丝,帚状枝为双轮生、单轮生,分生孢子均为椭球形至近球形,壁光滑至稍粗糙(Visagie et al. 2015)。分子种系学分析显示该菌株与T. fuscoviridis的模式菌株CBS 193.69同在一个分支且具有显著的高支持率(图1)。

Talaromyces kendrickii同样也应该属于稀有种但分布比较广泛。该种在2015年建立后到目前GenBank只记录7株菌的序列,但其在北美洲、非洲、欧洲和澳洲均有报道(Houbraken et al. 2020)。发现于我国的T. kendrickii这两株菌与模式菌株在菌落形态上存在一些差别。比如我国菌株均产生大量草绿色分生孢子,菌丝体颜色为黄绿色,但模式菌株CBS 136666的分生孢子稀疏,菌丝体颜色为浅粉色。但它们在显微结构上几乎完全相同,例如均产生双轮生和单轮生及不规则生帚状枝,排列不紧密,瓶梗安瓿形,分生孢子近球形至椭球形,壁粗糙(Visagie et al. 2015)。分子种系学分析也显示该菌株与T. kendrickii的模式菌株IBT 14128同在一个分支且具有显著的高支持率(图1)。

Talaromyces stollii是常见种(abundant species)且分布广泛,在世界范围内均有报道(Houbraken et al. 2020)。发现于我国的3个菌株的培养性状和显微性状几乎与模式菌株CBS 132696完全相同(Yilmaz et al. 2012)。该种与T. amestolkiae在菌落形态上很相似,依据形态学鉴定时容易混淆,尤其是其生长速度和分生孢子颜色非常相近。通过以下几方面的特征可以区分:T. stollii的菌落虽为绒状,但表面覆盖大量絮状菌丝而形成绒兼絮状菌落,而T. amestolkiae的菌落为典型绒状,只在CYA上有稀疏的絮状菌丝;在显微结构上,T. stollii产生的帚状枝排列紧密,常见三轮生的帚状枝,其瓶梗为典型披针形,而T. amestolkiae的帚状枝排列不紧密,偶见不规则的帚状枝,其瓶梗为安瓿形。

Talaromyces versatilis可能属于稀有种、狭域种,该种在2013年建立后到目前GenBank中只有6株菌的序列且只在欧洲和亚洲报道(Heo et al. 2019)。我国的T. versatilis菌株AS3.15853与模式菌株IMI 134755在菌落形态上基本一致,只是分生孢子产生较少,另外该菌株能形成菌丝绳,而模式菌株不形成菌丝绳。在显微结构上,除了该菌株产生双轮生和单轮生帚状枝,而模式菌株不形成单轮生帚状枝外,其他特征均与模式菌株相同。

参考文献

Benjamin CR, 1955.

Ascocarps of Aspergillus and Penicillium

Mycologia, 47:669-687

DOI:10.1080/00275514.1955.12024485      URL     [本文引用: 1]

Bridge PD, Buddie AG, 2013.

Talaromyces versatilis Bridge & Buddie, sp. nov

Index Fungorum, 26:1

[本文引用: 1]

Chen AJ, Sun BD, Houbraken J, Frisvad JC, Yilmaz N, Zhou YG, Samson RA, 2016.

New Talaromyces species from indoor environments in China

Studies in Mycology, 84:119-144

DOI:10.1016/j.simyco.2016.11.003      URL     [本文引用: 1]

Chen H, Ding G, Sun BD, Zhang Z, Wang L, Chen J, 2020.

Current taxonomy of Talaromyces and three new Chinese records

Mycosystema, 40(5):1200-1215

Glass NL, Donaldson GC, 1995.

Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes

Applied and Environmental Microbiology, 61(4):1323-1330

DOI:10.1128/aem.61.4.1323-1330.1995      URL     [本文引用: 1]

Hall BG, 2013.

Building phylogenetic trees from molecular data with MEGA

Molecular Biology and Evolution, 30:1229-1235

DOI:10.1093/molbev/mst012      URL     [本文引用: 1]

Heo I, Hong K, Yang H, Lee HB, Choi YJ, Hong SB, 2019.

Diversity of Aspergillus, Penicillium and Talaromyces species isolated from freshwater environments in Korea

Mycobiology, 47:12-19

DOI:10.1080/12298093.2019.1572262      URL     [本文引用: 1]

Houbraken J, Samson RA, 2011.

Phylogeny of Penicillium and the segregation of Trichocomaceae into three families

Studies in Mycology, 70:1-55

DOI:10.3114/sim.2011.70.01      PMID:22308045      [本文引用: 1]

Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. Thermoascus and Paecilomyces, both members of Thermoascaceae, also form ascospores lacking a furrow or slit, but are differentiated from Trichocomaceae by the production of asci from croziers and their thermotolerant or thermophilic nature. Phylogenetic analysis shows that Penicillium is polyphyletic. The genus is re-defined and a monophyletic genus for both anamorphs and teleomorphs is created (Penicillium sensu stricto). The genera Thysanophora, Eupenicillium, Chromocleista, Hemicarpenteles and Torulomyces belong in Penicilliums. str. and new combinations for the species belonging to these genera are proposed. Analysis of Penicillium below genus rank revealed the presence of 25 clades. A new classification system including both anamorph and teleomorph species is proposed and these 25 clades are treated here as sections. An overview of species belonging to each section is presented.New sections, all in Penicillium: sect. Sclerotiora Houbraken & Samson, sect. Charlesia Houbraken & Samson, sect. Thysanophora Houbraken & Samson,sect. Ochrosalmonea Houbraken & Samson, sect. Cinnamopurpurea Houbraken & Samson, Fracta Houbraken & Samson, sect. Stolkia Houbraken & Samson, sect. Gracilenta Houbraken & Samson, sect. Citrina Houbraken & Samson, sect. Turbata Houbraken & Samson, sect. Paradoxa Houbraken & Samson, sect. Canescentia Houbraken & Samson. New combinations:Penicillium asymmetricum (Subramanian & Sudha) Houbraken & Samson, P. bovifimosum (Tuthill & Frisvad) Houbraken & Samson, P. glaucoalbidum (Desmazières) Houbraken & Samson, P. laeve (K. Ando & Manoch) Houbraken & Samson, P. longisporum (Kendrick) Houbraken & Samson, P. malachiteum (Yaguchi & Udagawa) Houbraken & Samson, P. ovatum (K. Ando & Nawawi) Houbraken & Samson, P. parviverrucosum (K. Ando & Pitt) Houbraken & Samson, P. saturniforme (Wang & Zhuang) Houbraken & Samson, P. taiwanense (Matsushima) Houbraken & Samson. New names:Penicillium coniferophilum Houbraken & Samson, P. hennebertii Houbraken & Samson, P. melanostipe Houbraken & Samson, P. porphyreum Houbraken & Samson.

Houbraken J, Kocsube S, Visagie CM, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Samson RA, Frisvad JC, 2020.

Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species

Studies in Mycology, 95:5-169

DOI:10.1016/j.simyco.2020.05.002      URL     [本文引用: 2]

Jiang XZ, Yu ZD, Ruan YM, Wang L, 2018.

Three new species of Talaromyces sect. Talaromyces discovered from soil in China

Scientific Reports, 8:4932

DOI:10.1038/s41598-018-23370-x      URL     [本文引用: 1]

Kong HZ, Wang L, 2007. Flora fungorum sinicorum. Vol. 35. Penicillium et teleomorphi cognati. Science Press, Beijing. 1-284(in Chinese)

Malloch D, 1981. Moulds their isolation, cultivation and identification. University of Toronto Press, Toronto, Canada. 1-97

[本文引用: 1]

McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smitt GF, Wiersema JH, Turland NJ, 2012.

International code of nomenclature for algae, fungi, and plants

Melbourne Code, Regnum Vegetabile 154. Koeltz Scientific Books, Koenigstein, 1-257

[本文引用: 1]

Peterson SW, Jurjevićž, 2019.

The Talaromyces pinophilus species complex

Fungal Biology, 123:745-762

DOI:S1878-6146(18)30307-6      PMID:31542192      [本文引用: 1]

A sample of isolates from Talaromyces pinophilus (55 isolates) and closely related species (76 isolates) was sequenced at four loci, the data were analyzed using maximum likelihood analysis and the GCPSR. The isolates were subjected to growth studies on the recommended media for description of Talaromyces species. On the basis of the combined data, five new species were segregated out of T. pinophilus and placed in newly described species. The T. pinophilus species complex contains ten species. The three other new species, Talaromyces argentinensis, T. californicus and T. louisianensis were not a part of the T. pinophilus species complex but occurred in Talaromyces sect. Talaromyces. T. argentinensis produces a teleomorphic state and is phylogenetically and morphologically distinct from other Talaromyces species.Published by Elsevier Ltd.

Pitt JI, 1979. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London, UK. 1-634

[本文引用: 2]

Raper KB, Thom C, 1949.

A manual of the penicillia

Williams and Wilkins, Baltimore, USA. 1-875

[本文引用: 1]

Ridgway R, 1912.

Color standards and color nomenclature

Published by the author, Washington DC, USA. 1-53

[本文引用: 1]

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, 2012.

MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space

Systematic Biology, 61:539-542

DOI:10.1093/sysbio/sys029      PMID:22357727      [本文引用: 1]

Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B, 2010.

Food and indoor fungi. 2nd ed

CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands. 1-390

[本文引用: 1]

Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, 2011.

Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium

Studies in Mycology, 70:159-183

DOI:10.3114/sim.2011.70.04      PMID:22308048      [本文引用: 2]

The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified in Talaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticilliumsensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. For detailed phylogenetic analysis of species relationships, the ITS region (incl. 5.8S nrDNA) was sequenced for the available type strains and/or representative isolates of Talaromyces and related biverticillate anamorphic species. Extrolite profiles were compiled for all type strains and many supplementary cultures. All evidence supports our conclusions that Penicillium subgenus Biverticillium is distinct from other subgenera in Penicillium and should be taxonomically unified with the Talaromyces species that reside in the same clade. Following the concepts of nomenclatural priority and single name nomenclature, we transfer all accepted species of Penicillium subgenus Biverticillium to Talaromyces. A holomorphic generic diagnosis for the expanded concept of Talaromyces, including teleomorph and anamorph characters, is provided. A list of accepted Talaromyces names and newly combined Penicillium names is given. Species of biotechnological and medical importance, such as P. funiculosum and P. marneffei, are now combined in Talaromyces. Excluded species and taxa that need further taxonomic study are discussed. An appendix lists other generic names, usually considered synonyms of Penicillium sensu lato that were considered prior to our adoption of the name Talaromyces.Taxonomic novelties:New species - Talaromyces apiculatus Samson, Yilmaz & Frisvad, sp. nov. New combinationsand names - Talaromyces aculeatus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. albobiverticillius (H.-M. Hsieh, Y.-M. Ju & S.-Y. Hsieh) Samson, Yilmaz, Frisvad & Seifert, T. allahabadensis (B.S. Mehrotra & D. Kumar) Samson, Yilmaz & Frisvad, T. aurantiacus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, & Frisvad, T. boninensis (Yaguchi & Udagawa) Samson, Yilmaz, & Frisvad, T. brunneus (Udagawa) Samson, Yilmaz & Frisvad, T. calidicanius (J.L. Chen) Samson, Yilmaz & Frisvad, T. cecidicola (Seifert, Hoekstra & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. coalescens (Quintan.) Samson, Yilmaz & Frisvad, T. dendriticus (Pitt) Samson, Yilmaz, Frisvad & Seifert, T. diversus (Raper & Fennell) Samson, Yilmaz & Frisvad, T. duclauxii (Delacr.) Samson, Yilmaz, Frisvad & Seifert, T. echinosporus (Nehira) Samson, Yilmaz & Frisvad, comb. nov. T. erythromellis (A.D. Hocking) Samson, Yilmaz, Frisvad & Seifert, T. funiculosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. islandicus (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. loliensis (Pitt) Samson, Yilmaz & Frisvad, T. marneffei (Segretain, Capponi & Sureau) Samson, Yilmaz, Frisvad & Seifert, T. minioluteus (Dierckx) Samson, Yilmaz, Frisvad & Seifert, T. palmae (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. panamensis (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. paucisporus (Yaguchi, Someya & Udagawa) Samson & Houbraken T. phialosporus (Udagawa) Samson, Yilmaz & Frisvad, T. piceus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. pinophilus (Hedgcock) Samson, Yilmaz, Frisvad & Seifert, T. pittii (Quintan.) Samson, Yilmaz, Frisvad & Seifert, T. primulinus (Pitt) Samson, Yilmaz & Frisvad, T. proteolyticus (Kamyschko) Samson, Yilmaz & Frisvad, T. pseudostromaticus (Hodges, G.M. Warner, Rogerson) Samson, Yilmaz, Frisvad & Seifert, T. purpurogenus (Stoll) Samson, Yilmaz, Frisvad & Seifert, T. rademirici (Quintan.) Samson, Yilmaz & Frisvad, T. radicus (A.D. Hocking & Whitelaw) Samson, Yilmaz, Frisvad & Seifert, T. ramulosus (Visagie & K. Jacobs) Samson, Yilmaz, Frisvad & Seifert, T. rubicundus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, Frisvad & Seifert, T. rugulosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. sabulosus (Pitt & A.D. Hocking) Samson, Yilmaz & Frisvad, T. siamensis (Manoch & C. Ramírez) Samson, Yilmaz & Frisvad, T. sublevisporus (Yaguchi & Udagawa) Samson, Yilmaz & Frisvad, T. variabilis (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. varians (G. Sm.) Samson, Yilmaz & Frisvad, T. verruculosus (Peyronel) Samson, Yilmaz, Frisvad & Seifert, T. viridulus Samson, Yilmaz & Frisvad.

Su L, Niu YC, 2018.

Multilocus phylogenetic analysis of Talaromyces species isolated from cucurbit plants in China and description of two new species, T. cucurbitiradicus and T. endophyticus

Mycologia, 110(2):375-386

DOI:10.1080/00275514.2018.1432221      URL     [本文引用: 1]

Sun BD, Chen AJ, Houbraken J, Frisvad JC, Wu WP, Wei HL, Zhou YG, Jiang XZ, Samson RA, 2020.

New section and species in Talaromyces

MycoKeys, 68:75-113

DOI:10.3897/mycokeys.68.52092      URL    

Sun JQ, Ruan YM, Jin SY, Wang L, 2020.

The importance of Talaromyces and its taxonomy

Journal of Fungal Research, Doi: 10.13341/jjfr.2020.1374

URL     [本文引用: 2]

Tzean SS, Chiu SC, Chen JL, Hseu SH, Lin GH, Liou GY, Che CC, Hsu WH, 1994.

Penicillium and related teleomorphs from Taiwan

Food Industry Research and Development Institute, Hsinchu, Taiwan. 1-158

[本文引用: 1]

Visagie CM, Yilmaz N, Frisvad JC, Houbraken J, Seifert KA, Samson RA, Jacobs K, 2015.

Five new Talaromyces species with ampulliform-like phialides and globose rough walled conidia resembling T. verruculosus

Mycoscience, 56:486-502

DOI:10.1016/j.myc.2015.02.005      URL     [本文引用: 2]

Wang L, 2012.

Four new records of Aspergillus section Usti from Shandong Province, China

Mycotaxon, 120:373-384

DOI:10.5248/120.373      URL     [本文引用: 1]

Wang L, Sun JQ, Jin SY, 2020.

Two new records of Talaromyces section Islandici species from China

Journal of Liaocheng University (Natural Science Edition), 33(4):78-84 (in Chinese)

Wang L, Zhuang WY, 2004.

Designing primer sets for amplification of partial calmodulin genes from penicillia

Mycosystema, 23:466-473

[本文引用: 1]

Wang L, Zhuang WY, 2007.

Phylogenetic analyses of penicillia based on partial calmodulin gene sequences

BioSystems, 88:113-126

DOI:10.1016/j.biosystems.2006.04.008      URL     [本文引用: 1]

Wang QM, Zhang YH, Wang B, Wang L, 2016a.

Talaromyces neofusisporus and T. qii, two new species of section Talaromyces isolated from plant leaves in Tibet, China

Scientific Reports, 6:18622

DOI:10.1038/srep18622      URL     [本文引用: 1]

Wang XC, Chen K, Qin WT, Zhuang WY, 2017.

Talaromyces heiheensis and T. mangshanicus, two new species from China

Mycological Progress, 16:73-81

DOI:10.1007/s11557-016-1251-3      URL     [本文引用: 1]

Wang XC, Chen K, Xia YW, Wang L, Li TH, Zhuang WY, 2016b.

A new species of Talaromyces, Trichocomaceae, from the Xisha Islands, Hainan, China

Phytotaxa, 267(3):187-200

DOI:10.11646/phytotaxa.267.3      URL     [本文引用: 1]

White TJ, Bruns T, Lee S, Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MS, Gelfand DH (eds.) PCR protocols: a guide to methods and applications. Academic Press, New York. 315-322

[本文引用: 1]

Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA, 2012.

Delimitation and characterisation of Talaromyces purpurogenus and related species

Persoonia, 29:39-54

DOI:10.3767/003158512X659500      URL     [本文引用: 1]

Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA, 2014.

Polyphasic taxonomy of the genus Talaromyces

Studies in Mycology, 78:175-341

DOI:10.1016/j.simyco.2014.08.001      URL     [本文引用: 1]

陈晗, 丁刚, 孙炳达, 张争, 王龙, 陈娟, 2020.

篮状菌属分类概述及三个中国新记录种

菌物学报 40(5):1200-1215

[本文引用: 1]

孔华忠, 王龙, 2007. 中国真菌志第35卷·青霉属及其相关有性型属. 北京: 科学出版社. 1-284

[本文引用: 1]

孙剑秋, 阮永明, 金世宇, 王龙, 2020.

篮状菌属的重要性及其分类学研究概况

菌物研究,Doi: 10.13341/jjfr.2020.1374

URL     [本文引用: 1]

王龙, 孙剑秋, 金世宇, 2020.

篮状菌属岛篮状菌组的两个中国新记录种

聊城大学学报(自然科学版), 33(4):78-84

[本文引用: 3]

/