中文  |  English

菌物学报, 2021, 40(5): 992-1007 doi: 10.13346/j.mycosystema.200296

研究论文

中国中部太白山不同海拔杜鹃兰根部内生真菌多样性

任玮1, 杨韧3, 张永新1, 唐明,1,2,*

1.西北农林科技大学林学院 陕西 杨凌 712100

2.亚热带农业生物资源保护与利用国家重点实验室 华南农业大学林学与风景园林学院 广东 广州 510642

3.深圳华大基因股份有限公司 广东 深圳 518000

Diversity of endophytic fungi in the roots of Cremastra appendiculata (Orchidaceae) at different altitudes in Taibaishan Nature Reserve, Central China

REN Wei1, YANG Ren3, ZHANG Yong-Xin1, TANG Ming,1,2,*

1. College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China

2. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong 510642, China

3. BGI Genomics Corporation Limited, Shenzhen, Guangdong 518000, China

责任编辑: 韩丽

收稿日期: 2020-09-15   接受日期: 2020-12-7   网络出版日期: 2021-05-22

基金资助: 国家自然科学基金.  41671268

Corresponding authors: * E-mail: tangm@nwsuaf.edu.cn

Received: 2020-09-15   Accepted: 2020-12-7   Online: 2021-05-22

Fund supported: National Natural Science Foundation of China.  41671268

摘要

本研究以太白山自然保护区蒿坪站杜鹃兰Cremastra appendiculata为材料,采用菌丝团和根组织分离法进行真菌分离,并用ITS序列分子鉴定;用变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)分析根部内生真菌多样性,研究海拔和根际土理化性质对真菌多样性的影响。分离到79株19种真菌,均为子囊菌门Ascomycota,隶属于座囊菌纲Dothideomycetes 1目2科2种和粪壳菌纲Sordariomycetes 7目10科17种,其中12种兰科菌根真菌。DGGE检测到80种真菌,其中兰科菌根真菌交链链格孢、锈腐土赤壳和木霉属真菌可通过组织分离法得到,担子菌门Basidiomycota 3种真菌只在DGGE检测到。随着海拔升高,根际土硝态氮和速效磷下降,导致真菌丰富度和香侬维纳指数降低,辛普森指数升高。本研究为发掘此地区杜鹃兰菌根真菌资源进行杜鹃兰人工培育奠定基础。

关键词: 兰科植物 ; 兰科菌根真菌 ; 变性梯度凝胶电泳 ; 真菌群落结构

Abstract

Cremastra appendiculata roots were collected from Haoping Station of Taibaishan Nature Reserve. The cultivable fungi were isolated from the pelotons and roots, and the fungal ITS sequences were used for molecular identification. The community diversity of endophytic fungi in the roots were analyzed by denaturing gradient gel electrophoresis (DGGE) to evaluate the influence of different altitudes (1 177m, 1 409m and 1 590m) and the physical and chemical properties of rhizosphere soil in the same habitat on the diversity of endophytic fungi in the roots of C. appendiculata. The result was that 79 fungal isolates were identified as 19 species. Ascomycetes were dominant including two species of Dothideomycetes and 17 species of Sordariomycetes. Among them, 12 taxa belonged to orchid mycorrhizal fungi. In total, 80 fungal bands were detected by DGGE. Alternaria alternata, Ilyonectria destructans and Trichoderma spp. were obtained by culture method. In addition, three species of basidiomycetes, which were not detected by culture method, were newly detected by DGGE. The diversity of fungal community was related to altitude and significantly affected by nitrate nitrogen and available phosphorus in the rhizosphere soil. With the increase of altitude, the fungal richness and the Shannon-winner index decreased, while the Simpson index increased. This study provided a foundation for the further exploration of orchid mycorrhizal fungi in this area and a reference for artificial breeding of C. appendiculata.

Keywords: orchid ; orchid mycorrhizal fungi ; denaturing gradient gel electrophoresis ; fungal community structure

PDF (660KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

任玮, 杨韧, 张永新, 唐明. 中国中部太白山不同海拔杜鹃兰根部内生真菌多样性. 菌物学报[J], 2021, 40(5): 992-1007 doi:10.13346/j.mycosystema.200296

REN Wei, YANG Ren, ZHANG Yong-Xin, TANG Ming. Diversity of endophytic fungi in the roots of Cremastra appendiculata (Orchidaceae) at different altitudes in Taibaishan Nature Reserve, Central China. Mycosystema[J], 2021, 40(5): 992-1007 doi:10.13346/j.mycosystema.200296

杜鹃兰Cremastra appendiculata为兰科杜鹃兰属的多年生药用草本植物,有多种抗肿瘤活性成分(Liu et al. 2015;Liu et al. 2016),由于杜鹃兰自身繁殖困难和人为过度采挖使其野生资源濒临枯竭(郭顺星和徐锦堂 1990;王汪中等 2017)。太白山自然保护区地处秦岭山区中段,孕育了丰富的兰科植物资源(杨平厚等 2004),黄永会等(2007)在杜鹃兰根系中观察到典型的兰科植物菌根结构,并发现部分杜鹃兰菌根真菌能够促进杜鹃兰种子萌发(Yagame et al. 2013)和外植体成苗(Zhang et al. 2006)。兰科植物的生长发育依赖于菌根真菌提供营养(Lee et al. 2015;高越等 2019),且共生关系几乎伴随其整个生活史(Dearnaley et al. 2016)。Yagame et al.(2013)从日本神奈川县杜鹃兰根部分离到多株鬼伞属Coprinellus真菌,朱国胜(2009)从贵州施秉县杜鹃兰根部分离到的念珠菌根菌属Moniliopsis solani为杜鹃兰发育早期的优势菌根真菌,表明杜鹃兰根部优势内生真菌种类在不同地域存在差异。

自然状态下兰科植物与菌根真菌的共生会受到土壤类型和营养状况(盖雪鸽等 2014)、植被类型和海拔高度(徐玲玲等 2019;Lin et al. 2020)等多种因素的影响,土壤中菌根真菌的分布也会影响兰科植物的分布(Shefferson et al. 2005)。海拔梯度包含温度、湿度、土壤理化性质等各种环境因子,比纬度梯度变化更快,能够直接或间接影响植物根际真菌群落多样性(厉桂香和马克明 2018)。研究海拔梯度对真菌群落多样性的影响对研究生物多样性分布格局及其驱动因素具有重要意义。本研究选择同一栖息地下不同海拔杜鹃兰作为研究对象,对杜鹃兰根部内生真菌进行分离鉴定,分析太白山自然保护区蒿坪站野生杜鹃兰根部内生真菌的多样性及根际土理化性质,探究在同一生境中,不同海拔杜鹃兰根部内生真菌多样性和群落结构的变化规律,为我国野生兰科植物的培养和保护提供理论依据。

1 材料与方法

1.1 样地设置

杜鹃兰根系采集于陕西太白山国家自然保护区蒿坪站。地处秦岭山脉中段,属典型的内陆季风气候,海拔1 060-3 767m,年均气温12.9℃,年均降水量580mm(杨平厚等 2004)。2017年11月采取样地详查的方法调查野生杜鹃兰分布,根据其自然分布情况,于海拔1 177m、1 409m和1 590m处分别设置3个样地,每个样地设置10m×10m的样方,每个样方随机选取5株杜鹃兰进行采样。

为保护野生杜鹃兰,对所采植物自然状态进行拍照(图1A),采集生长健康的3-4个长5-10cm营养根,取样徒手切片,乳酸棉兰染色,观察菌丝团(黄永会等 2007),将有菌丝团的营养根(图1B图1C)与原生境腐殖质一起装入塑封袋中保鲜,迅速带回实验室4℃冰箱保存,用于根部内生真菌的分离和多样性分析。同时采集相应植株的根际土(去除表面腐殖质层,5-15cm土层),用于测定根际土理化性质。

图1

图1   野生杜鹃兰及根内菌丝团形态

A:自然状态下野生杜鹃兰;B,C:野生杜鹃兰根内菌丝团. P表示菌丝团,CO表示皮层,EX表示外皮层,PE表示中柱鞘,RH表示根毛,VE表示根被

Fig. 1   Wild Cremastra appendiculata and the morphology of pelotons in the roots.

A: The nature state of C. appendiculata; B and C: The morphology of pelotons in the roots of C. appendiculata observed under microscope. P=Pelotons, CO=Cortex, EX=External cortex, PE=Pericycle, RH=Root hair, VE=Velamen.


1.2 根际土理化性质测定

根际土测定鲜土含水量(烘干称重法);剩余土样自然风干,过0.15mm筛后采用鲍士旦(2000)的方法测定速效磷(碳酸氢钠浸提-钼锑抗比色法)、速效钾(乙酸铵浸提-火焰光度法)、硝态氮(氯化钾浸提-流动分析法)、铵态氮(氯化钾浸提-流动分析法)和有机质含量(外加热-重铬酸钾容量法)。

1.3 杜鹃兰根部内生真菌分离

真菌分离培养基为马铃薯燕麦琼脂培养基(potato oats agar,POA)(孙晓颖等 2015)、PDA和Martin琼脂培养基(侯天文等 2010)。采用组织分离法从菌丝团和根组织中分离根部内生真菌。将根系用75%乙醇和1%次氯酸钠表面消毒后,切成长2cm根段,均匀分成2组。一组切成0.5mm的薄片,平铺于3种培养基上,每皿10个(侯天文等 2010)。另一组用灭菌解剖刀将根皮层细胞刮下,置于无菌研钵中,加1mL无菌水碾碎制成菌丝团悬浮液,取8μL至3种培养基块(9mm)中央,每皿10块(孙晓颖等 2015)。28℃恒温暗培养,待有菌丝长出,挑取菌丝至PDA培养基上纯化后,转接到PDA斜面培养基上,4℃冰箱保存。

1.4 真菌鉴定

采用真菌DNA提取试剂盒(Fungal DNA Kit,Omega,America)提取DNA,以ITS1-F(5’-CTTGGTCATTTAGAGGAAGTAA-3’)(Gardes & Bruns 1993)和ITS4(5’-TCCTCCGCTTATTGA TATGC-3’)(White et al. 1990)为引物,扩增真菌转录间隔区(internal transcribed spacer,ITS)序列进行分子鉴定。采用40μL体系:模板2μL、2×Premix Taq 20μL(TaKaRa,Japan)、上游引物ITS1-F 1μL(10µmol/L)、下游引物ITS4 1μL(10µmol/L)、ddH2O 16μL。PCR条件:94℃预变性3min;35个循环,94℃变性30s,55℃退火30s,72℃延伸1min;最终72℃延伸5min(Seifert 2009)。经1%琼脂糖凝胶电泳(120V,30min)检测,PCR产物为单一条带,送至奥科鼎盛生物科技有限公司(北京)测序,测序结果上传至GenBank数据库(https://www.ncbi.nlm.nih.gov/genbank/),代表菌株GenBank登录号为MT920565- MT920583,运用BLAST工具(https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行同源比对,并下载高同源性序列为相似序列,用Clustal X(Version 2.1)进行多序列比对分析后,以MEGA(Version 5.05)中的Neighbor-Joining法计算Bootstrap值(1 000次随机抽样)构建系统发育树(Crozier et al. 2006;张宇和郭梁栋 2012)。真菌分离频率(isolation frequency,IF)为分离到该种真菌数与总分离真菌数的比值(柴新义和陈双林 2011)。E值表示期望偶然匹配的几率,小于10-5表明序列比对的可靠性高(Hou et al. 2018)。

1.5 杜鹃兰根部内生真菌多样性分析

1.5.1 DNA提取及巢式PCR:新鲜根经液氮研磨后,用DNA提取试剂盒提取DNA(Plant Genomic DNA kit,Tiangen,China),经Nanodrop和1%琼脂糖凝胶电泳(120V,30min)测定DNA浓度和质量(侯天文等 2010),参照Yu et al.(2013)的方法进行巢式PCR。第一轮PCR为20μL体系:模板1μL、2×Premix Taq 10μL、上游引物ITS1-F 0.5μL(10µmol/L)、下游引物ITS4 0.5μL(10µmol/L)、ddH2O 8μL。PCR条件:94℃预变性3min;35个循环,94℃变性1min,56℃退火1min,72℃延伸1min;最终72℃延伸10min。第二轮PCR为40μL体系:模板(第一轮PCR产物稀释100倍)2μL、2×Premix Taq 20μL、上游引物ITS1-F-GC(5’-CGCCCGCCGCGCGCGGCGG GCGGGGCGGGGGCACGGGGGGCTTGGTCATTTAGAGGAAGTAA-3’,下划线处为GC发夹结构)1μL(10µmol/L)、下游引物ITS2(5’-GCTGCGT TCTTCATCGATGC-3’)1μL(10µmol/L)、ddH2O 16μL(Gardes & Bruns 1993)。PCR条件:94℃预变性5min;35个循环,94℃变性45s,56℃退火45s,72℃延伸45s;最终72℃延伸5min。经1%琼脂糖凝胶电泳检测,第二轮PCR产物为单一条带,进行变性梯度凝胶电泳。

1.5.2 变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE):参照Strathdee & Free(2013)的方法配制变性梯度胶,浓度为30%-40%,从胶的上方向下方递增。取巢式PCR第二轮产物40µL加入加样孔中,电泳缓冲液为1×TAE,60℃,70V预电泳30min,120V电泳5h。电泳完毕,将胶块放入含核酸染液(Gel Stain,TransGen,China)的1×TAE中染色30min,在凝胶自动成像仪上拍照、保存,用于杜鹃兰根部内生真菌多样性分析。将DGGE凝胶各泳道最亮的条带切下,置入100μL无菌水中4℃浸泡24h作为模板,以巢式PCR第二轮程序不含GC发夹结构的引物ITS1-F和ITS2扩增ITS区用于优势菌鉴定(Yu et al. 2013),经1%琼脂糖凝胶电泳检测后,单一条带送至奥科鼎盛生物科技有限公司(北京)测序,测序结果已上传至GenBank数据库,GenBank登录号为MT929301- MT929309。

1.6 数据处理

使用Microsoft Office Excel(Version 2016)统计数据,SPSS(Version 19.0)进行单因素方差分析(Duncan’s test)和相关性分析(Pearson’s correlation coefficient),MetaboAnalyst(Version 4.0)进行主成分分析(Chong et al. 2019)。DGGE图谱通过Quantity One(Version 4.41)软件进行数字化处理,将条带的亮度转换为峰密度值分析真菌多样性,依据公式将得到的峰密度值转为辛普森指数(D)、均匀度指数(Eh)和香侬维纳指数(H),丰富度指数(S)以各泳道出现的条带数表示。S为DGGE图谱中的不同条带数的总和,N为各泳道中检测到所有条带的峰密度的总和,Ni为第i条泳道的峰密度值(Yu et al. 2013)。

$\begin{align} & H=-\sum\limits_{i=1}^{s}{PilnPi=-\sum\limits_{i=1}^{s}{(Ni/N)ln(Ni/N)}} \\ & {{E}_{h}}=H/{{H}_{max}}=H/lnS \\ & D=\sum\limits_{i=1}^{s}{{{(Ni/N)}^{2}}} \\ \end{align}$

2 结果与分析

2.1 杜鹃兰根部内生真菌鉴定及系统发育分析

采用组织分离法从根组织和菌丝团在3种培养基上分离到79株真菌,通过比对真菌ITS序列鉴定为19种(表1)。19种真菌E值均小于10-5,表明序列比对的可靠性高。除M251、M342、O322B和TP331B以外,其余15种真菌ITS序列一致性均达到98%以上,认为是同种真菌。结合系统发育分析,M251为角担菌科Ceratobasidiaceae真菌,M342为刺盘孢菌属Colletotrichum真菌,O322B为毛壳菌属Chaetomium真菌,TP331B为木霉属Trichoderma真菌。系统发育树中,19种真菌ITS序列与GenBank数据库相似度最高序列能够聚在一起,且隶属于同一目的真菌聚在一起,与分子鉴定结果一致(图2)。

表1   根部内生真菌鉴定结果

Table 1  Taxonomic status of the fungi isolated from the roots of Cremastra appendiculata

菌株号
Strain
No.
登录号
Accession
No.
分类地位
Taxonomic
affiliation
GenBank最相似序列
Closest match in GenBank
序列一致性
Sequence
identity (%)
E值
E-value
分离
频率
IF (%)
分离方式
Isolated
method
M111MT920565小丛壳科
Glomerellaceae
麦冬刺盘孢
Colletotrichum liriopes
isolate HZ-1 (MK644098.1)
98.8008根组织
Roots
菌丝团
Pelotons
M112MT920566小双腔菌科
Didymellaceae
Paraboeremia putaminum
strain CBS 538.66 (MH858878.1)
99.6203根组织
Roots
M251MT920567角担菌科
Ceratobasidiaceae
Ceratobasidiaceae sp.
CBS 510.93 (KF267009.1)
82.392E-321根组织
Roots
M311MT920568炭角菌科
Xylariaceae
多节孢属
Nodulisporium sp.
JP60-3 (GQ906948.1)
98.56014根组织
Roots
M321YMT920569小丛壳科
Glomerellaceae
大豆刺盘孢
Colletotrichum truncatum
strain BBA 70523 (AJ301937.1)
98.9604根组织
Roots
M322MT920570丛赤壳科
Nectriaceae
锈腐土赤壳
Ilyonectria destructans
isolate UASWS1480 (KT722597.1)
100.0003根组织
Roots
M342MT920571小丛壳科
Glomerellaceae
Colletotrichum rhombiforme
isolate RP257_2 (KX067811.1)
74.292E-171根组织
Roots
M353MZMT920572炭角菌科
Xylariaceae
Nemania serpens voucher KoLRI_
EL006190 (MN844433.1)
98.9905根组织
Roots
O112MT920573麦角菌科
Clavicipitaceae
厚垣轮枝孢菌
Metacordyceps chlamydosporia
isolate KYK00228 (AB378549.1)
99.6706根组织
Roots
O311MT920574团壳菌科
Boliniaceae
Camaropella pugillus
strain CBS 128346 (MH864891.1)
98.6906根组织
Roots
O322BMT920575毛壳菌科
Chaetomiaceae
球毛壳菌
Chaetomium globosum
isolate FMB-HP03 (MF716852.1)
93.5703根组织
Roots
P142MT920576丛赤壳科
Nectriaceae
Dactylonectria macrodidyma
strain GFR05 (MT447510.1)
99.0904根组织
Roots
P231MT920577毛孢壳科
Coniochaetaceae
Coniochaeta mutabilis
strain KRP51-8 (HM036599.1)
99.6303根组织
Roots
P321MT920578小丛壳科
Glomerellaceae
高代花刺盘孢
Colletotrichum godetiae
isolate A49 (LT717068.1)
99.1501根组织
Roots
P353MT920579线孢虫草科
Ophiocordycipitaceae
白色弯颈霉
Tolypocladium album
strain CBS 830.73 (MH860811.1)
98.7903根组织
Roots
TM121MT920580肉座菌科
Hypocreaceae
多孢木霉
Trichoderma polysporum
isolate TR3.2 (KX343125.1)
98.87023根组织
Roots
菌丝团
Pelotons
TP131MT920581毛孢壳科
Coniochaetaceae
木生锥毛壳
Coniochaeta ligniaria
strain B121 (KX090317.1)
99.2601菌丝团
Pelotons
TP321HMT920582隔孢腔菌科
Pleosporaceae
交链链格孢
Alternaria alternata
isolate RdKnA-5 (MF167641.1)
99.4805根组织
Roots
菌丝团
Pelotons
TP331BMT920583肉座菌科
Hypocreaceae
装絮木霉
Trichoderma tomentosum
strain DAOM 195050
(AY605717.1)
95.3508根组织
Roots
菌丝团
Pelotons

新窗口打开| 下载CSV


图2

图2   基于ITS序列构建的内生真菌系统发育树

Fig. 2   Phylogenetic tree based on ITS sequences of endophytic fungi in roots of Cremastra appendiculata.


19种真菌均属于子囊菌门Ascomycota,隶属于2纲8目12科(表1)。其中座囊菌纲Dothideomycetes 1目2科2种,小双腔菌科Didymellaceae和隔孢腔菌科Pleosporaceae各1种;粪壳菌纲Sordariomycetes 7目10科17种,最多的为小丛壳科Glomerellaceae 4种,肉座菌科Hypocreaceae、丛赤壳科Nectriaceae、毛孢壳科Coniochaetaceae和炭角菌科Xylariaceae各2种,线孢虫草菌科Ophiocordycipitaceae、麦角菌科Clavicipitaceae、角担菌科、团壳菌科Boliniaceae和毛壳菌科Chaetomiaceae各1种。其中,麦冬刺盘孢Colletotrichum liriopes、多孢木霉Trichoderma polysporum、交链链格孢Alternaria alternata和木霉属Trichoderma sp.从根组织和菌丝团中均能分离得到。肉座菌科、炭角菌科和小丛壳科真菌分离频率较高,分别为31%、19%和14%,其中肉座菌科的多孢木霉Trichoderma polysporum和炭角菌科的多节孢属真菌Nodulisporium sp.分离频率分别为23%和14%。

2.2 不同海拔野生杜鹃兰根部内生真菌多样性

DGGE图谱条带清晰,表明变性胶浓度合适,每一条电泳条带代表单独的真菌,条带亮度表示该真菌数量,共检测到80种不同真菌(图3A)。不同海拔样地条带分布和亮度不同,表明真菌多样性存在差异,不同样地的优势条带位置不同表明优势菌存在差异。以第1泳道作为参考泳道进行泳道分析,条带相似度较低表明不同海拔样地间真菌多样性不同(图3B)。

图3

图3   根部内生真菌DGGE图谱及泳道分析

A:泳道顶部数字为样品号,1-5、6-10和11-15分别为1 177m、1 409m和1 590m海拔样地;箭头所指条带为优势菌条带. B:泳道底部数字为对应图A中样品编号,编号下为与1泳道的相似系数

Fig. 3   DGGE profiles and lane analysis of endophytic fungi in roots of Cremastra appendiculata.

The number at the top of lane in A represented the sample number. 1-5, 6-10 and 11-15 sampled in altitudes of 1 177m, 1 409m and 1 590m respectively. The band with arrow represented the dominant fungi. The number at the bottom of lane in B was the sample number in Fig. A. The number under sample number was the similarity coefficient with lane 1.


各样地优势菌序列与GenBank数据库比对信息见表2。条带5的序列一致性为96.23%,为柔膜菌科Helotiaceae真菌,条带6的序列一致性为97.78%,为链格孢属Alternaria真菌,条带8的序列一致性为97.09%,为锤舌菌纲Leotiomycetes真菌,其余条带序列一致性大于98%,可确认为同一种。E值均小于10-5,表明序列比对的可靠性高。拟锁瑚菌属真菌Clavulinopsis sp.(HQ021970.1)和锈腐土赤壳I. destructans(MN540280.1)在3个海拔下均为优势菌。1 177m海拔处特有优势菌为乳菇属的Lactarius gymnocarpoides(LK392600.1)和四枝孢属的Tetracladium maxilliforme(MK353128.1),1 409m海拔处特有优势菌为丝核菌属真菌Rhizoctonia sp.(DQ061931.1)、膜盘菌属真菌Hymenoscyphus sp.(AB456655.1)和链格孢属真菌Alternaria sp.(MT594775.1),1 590m海拔处特有优势菌为锤舌菌纲真菌Leotiomycetes sp.(FJ553339.1)和哈茨木霉T. harzianum(MT594389.1),说明不同海拔下杜鹃兰与内生真菌的共生关系存在差异。

表2   DGGE分析优势菌鉴定结果

Table 2  Taxonomic status of dominant fungi identified by DGGE

条带号
Band No.
海拔
Altitude (m)
登录号
Accession No.
分类地位
Taxonomic affiliation
GenBank最相似序列
Closest match in GenBank
序列一致性
Sequence
identity (%)
E值
E-value
11 177MT929301红菇科
Russulaceae
Lactarius gymnocarpoides
strain MD318 (LK392600.1)
1005E-10
21 177MT929302子囊菌类
Ascomycota incertae sedis
Tetracladium maxilliforme
strain DSM105583 (MK353128.1)
1004E-141
31 177,
1 409,
1 590
MT929303珊瑚菌科
Clavariaceae
Uncultured Clavulinopsis sp.
clone 4Bart1300S (HQ021970.1)
1006E-11
41 409MT929304伞菌亚门
Agaricomycotina
Uncultured Rhizoctonia sp.
isolate IT1B-10r (DQ061931.1)
1005E-13
51 409MT929305柔膜菌科
Helotiaceae
Uncultured Hymenoscyphus sp.
clone ITS-09 (AB456655.1)
96.231E-13
61 409MT929306隔孢腔菌科
Pleosporaceae
交链链格孢Alternaria alternata
strain OTU1257 (MT594775.1)
97.789E-11
71 177,
1 409,
1 590
MT929307丛赤壳科
Nectriaceae
锈腐土赤壳
Ilyonectria destructans
(MN540280.1)
98.804E-121
81 590MT929308锤舌菌纲
Leotiomycetes
Uncultured ectomycorrhiza
(Leotiomycetes) clone LTSP_
EUKA_ P3A23 (FJ553339.1)
97.094E-126
91 590MT929309肉座菌科
Hypocreaceae
哈茨木霉Trichoderma harzianum
strain 104-D12 (MT594389.1)
1003E-15

注:条带号对应图3A中优势菌条带编号

Note: The band No. corresponds to the band No. of dominant fungi in Fig. 3A.

新窗口打开| 下载CSV


运用Quantity One软件对所得DGGE图谱进行数字化处理后分析,得到3个海拔下杜鹃兰根部内生真菌多样性指数(图4)。3个海拔样地真菌均匀度指数差异不显著(图4A)。真菌丰富度和香侬维纳指数在1 177m海拔处最高(图4B和图4C),1 409m和1 590m海拔处相对较低。辛普森指数在1 177m海拔处最低(图4D),1 409m和1 590m海拔处相对较高。在1 409m海拔处真菌丰富度、香侬维纳指数和辛普森指数与1 590m海拔处无显著差异。

图4

图4   不同海拔样地真菌群落多样性指数

柱子表示均值±标准误,柱子上不同小写字母表示差异显著(Duncan检验,P<0.05,n=5)

Fig. 4   The diversity indices of fungal community in different sample sites. Bars indicate mean±SE.

The different lowercase letters on the bars mean that there is significant difference by Duncan’s test (P<0.05, n=5).


海拔变化对太白山杜鹃兰根部内生真菌群落丰富度、香侬维纳指数和辛普森指数影响较大,海拔越高内生真菌越少,群落分布越不均匀,优势真菌越突出。

2.3 不同海拔下杜鹃兰根部内生真菌多样性与土壤理化性质的关系

主成分分析(principal component analyses,PCA)海拔与杜鹃兰根部内生真菌多样性和样地根际土理化性质的关系(图5),第一主成分(principal component 1,PC1)和第二主成分(principal component 2,PC2)的总解释量为96.3%,PC1和PC2将3个海拔样地分开,表明不同海拔野生杜鹃兰根部内生真菌多样性和根际土理化性质存在显著差异。

图5

图5   不同海拔样地真菌群落多样性与根际土理化性质的主成分分析

1 177、1 409和1 590分别表示1 177、1 409和1 590m海拔的3个样地,n=5

Fig. 5   Principal component analysis plot of the fungal community diversity indices and rhizosphere soil factors in different altitude sample sites.

1 177, 1 409 and 1 590 respectively represented 3 sample sites at altitudes of 1 177, 1 409 and 1 590m, n=5.


对不同海拔杜鹃兰根际土壤理化性质分析表明,硝态氮和速效磷含量在1 177m海拔处最高,显著高于1 409m和1 590m海拔处,但1 409m和1 590m海拔样地的硝态氮和速效磷含量无显著差异。3个海拔样地的含水量、有机质、速效钾和铵态氮含量差异不显著(表3)。相关性分析表明,真菌丰富度与硝态氮极显著正相关,与速效磷显著正相关,与海拔极显著负相关;辛普森指数与海拔极显著正相关,与硝态氮显著负相关;香侬维纳指数与海拔极显著负相关,与硝态氮显著正相关(表4)。说明杜鹃兰根部内生真菌群落多样性与海拔有关,且受硝态氮和速效磷的影响较大。

表3   不同海拔杜鹃兰根际土土壤理化性质

Table 3  Rhizosphere soil factors of Cremastra appendiculata in different altitude sample sites

根际土理化性质
Rhizosphere soil factors
样地海拔Sample site altitudes (m)
1 1771 4091 590
有机质
Organic matter (g/kg)
119.50±25.90a68.46±17.08a72.14±3.72a
含水量
Water content
0.33±0.03a0.38±0.02a0.36±0.01a
硝态氮
Nitrate N (mg/kg)
67.27±25.01a13.28±1.29b36.13±2.10ab
铵态氮
Ammonium N (mg/kg)
43.77±11.58a29.94±1.41a48.07±6.29a
速效磷
Available P (mg/kg)
50.15±1.17a30.06±5.29b34.61±6.84b
速效钾
Available K (mg/kg)
72.91±4.66a80.99±3.14a77.20±1.39a

注:表中数据为均值±标准误(SE),同行不同字母代表差异显著(Duncan检验,P<0.05,n=5)

Note: The data in the table is the mean±standard error (SE), n=5. Different letters within a row indicate the values are significantly different at the level of P<0.05 by Duncan’s test.

新窗口打开| 下载CSV


表4   根际土理化性质与真菌多样性之间的相关性分析

Table 4  Pearson’s correlation analysis between rhizosphere soil factors and the fungal community diversity indices

根际土理化性质
Rhizosphere soil factors
相关系数Pearson’s correlation index
香侬维纳指数
Shannon-Wiener index
丰富度
Richness
均匀度指数
Evenness
辛普森指数
Simpson index
海拔Altitude-0.858**-0.868**0.4840.821**
含水量Water content-0.049-0.0540.2930.055
硝态氮Nitrate N0.607*0.652**0.087-0.534*
铵态氮Ammonium N0.2660.2800.437-0.235
速效磷Available P0.5130.519*-0.067-0.497
速效钾Available K-0.432-0.4670.0190.373
有机质Organic matter0.3230.368-0.365-0.267

注:*表示相关性达显著水平(P<0.05),**表示相关性达极显著水平(P<0.01),n=5

Note: * represents statistical significant at 0.05 level (P<0.05), ** represents statistical significant at 0.01 level (P<0.01), n=5.

新窗口打开| 下载CSV


3 讨论

对兰科植物菌根真菌角担菌科(López- Chávez et al. 2016)和胶膜菌科Tulasnellaceae的研究较多(盖雪鸽等 2014)。本研究以组织分离法从太白山蒿坪站3个海拔杜鹃兰根部分离到的内生真菌19种,均为子囊菌门,其中小丛壳科、肉座菌科、丛赤壳科、角担菌科、毛壳菌科、小双腔菌科和孢腔菌科的12种真菌属于兰科植物菌根真菌(郭顺星 2016)。DGGE检测到的真菌共80种,在组织分离法的基础上新检测到担子菌门红菇科、珊瑚菌科和伞菌亚门的真菌3种,子囊菌门柔膜菌科的真菌1种,明显多于组织分离法检测到的真菌。DGGE直接以样本中DNA进行分析,不受培养方式的影响,能够更准确地反映植物内生真菌的多样性(Strathdee & Free 2013)。DGGE的缺点在于不能直接获得可培养菌株。组织分离得到的真菌,可进行共生培养等研究,对进一步了解兰科植物与菌根真菌共生关系和兰科植物的人工培育繁殖具有非常重要的意义。但组织分离法会受培养基成分、培养方法等因素的限制,且自然界中绝大多数微生物尚不能被目前的纯培养技术培养(Rappé & Giovannoni 2003)。DGGE检测的9种优势菌中,通过组织分离法仅得到锈腐土赤壳、交链链格孢以及哈茨木霉同属的木霉属真菌,其余真菌不能从组织分离中得到。因此,将组织分离法和DGGE结合起来能够更全面且准确地反映植物内生真菌的多样性。

在组织分离和DGGE中均检测到兰科菌根真菌锈腐土赤壳、交链链格孢和木霉属真菌,表明锈腐土赤壳、交链链格孢和木霉属真菌可能在太白山区杜鹃兰的生长发育过程中起到至关重要的作用。其中,在3个海拔样地均检测到锈腐土赤壳,表明太白山区杜鹃兰可能与锈腐土赤壳关系更紧密。吴慧凤等(2012)发现链格孢属真菌可以促进铁皮石斛Dendrobium catenatum原球茎发育和幼苗生长,但部分兰科菌根真菌在其他宿主植物上表现为病原菌,如交链链格孢和锈腐土赤壳(傅本重等 2012)。同种真菌在不同兰科植物的不同生长发育阶段有不同的作用(Favre-Godal et al. 2020),如木霉属真菌为兼性腐生真菌,能拮抗多种植物病原真菌、增强菌根真菌的作用(Yuan et al. 2016),促进春兰和大花蕙兰的杂交苗生长(黄磊等 2004)。太白山区蒿坪站杜鹃兰根部优势内生真菌与Yagame et al.(2013)从日本神奈川县杜鹃兰根部分离到的鬼伞属Coprinellus真菌和朱国胜(2009)从贵州施秉县杜鹃兰根部分离到的念珠菌根菌属Moniliopsis solani不同,进一步证实杜鹃兰根部优势内生真菌种类存在地理差异。

兰科植物菌根真菌群落多样性受海拔的影响。徐玲玲等(2019)对四川黄龙沟不同海拔的西藏杓兰菌根真菌群落多样性研究表明,海拔升高兰科菌根真菌多样性降低。本研究取样点位于杜鹃兰同一栖息地不同海拔处,海拔升高,杜鹃兰根部内生真菌越少,群落分布越不均匀,优势真菌越突出。海拔的变化通常伴随着土壤养分的变化(厉桂香和马克明 2018)。菌根真菌能够改变土壤中氮和磷的有效性,为植物提供氮和磷元素(Bell et al. 2020),尤其是兰科植物的生长发育对菌根真菌提供营养的依赖性更强(Lee et al. 2015),土壤养分也能调节兰科菌根真菌与植物的共生关系(邓文祥等 2019;Mujica et al. 2020)。太白山蒿坪站杜鹃兰同一栖息地不同海拔处,根际土有机质、含水量、速效钾和铵态氮等营养元素含量无明显差异,但硝态氮和速效磷含量在1 177m海拔显著高于1 409m和1 590m,随海拔升高杜鹃兰根部内生真菌群落丰富度和香侬维纳指数降低。Gebauer & Meyer(2003)通过稳定同位素分析表明兰科植物能够从菌根真菌中获得碳和氮,土壤速效氮和速效磷含量对菌根侵染率有较大的影响(盖雪鸽等 2014)。土壤氮和磷水平是驱动土壤微生物多样性和群落结构改变的重要因子,影响着微生物代谢(Leff et al. 2015)。因此,根际土速效磷和硝态氮含量不同,可能是造成太白山杜鹃兰根部内生真菌群落随海拔变化的原因。

本研究分离得到的兰科菌根真菌交链链格孢、锈腐土赤壳和木霉属真菌可能与杜鹃兰生长关系更密切,后续可以对它们之间的共生关系与营养元素氮和磷吸收的机制进行进一步研究。对同一栖息地不同海拔下兰科菌根真菌群落多样性进行调查研究,有利于发掘此地区杜鹃兰菌根真菌资源,对兰科植物的人工培育繁殖以及物种多样性保护都有重要意义。

参考文献

Bao SD, 2000. Soil assay on properties of agro-chemistry. 3rd ed. China Agriculture Press, Beijing. 14-106(in Chinese)

Bell J, Yokoya K, Kendon JP, Sarasan V, 2020.

Diversity of root-associated culturable fungi of Cephalanthera rubra (Orchidaceae) in relation to soil characteristics

PeerJ, 8:1-17

[本文引用: 1]

Chai XY, Chen SL, 2011.

Diversity of endophytic fungi from Pteroceltis tatarinowii

Mycosystema, 30(1):18-26 (in Chinese)

Chong J, Wishart DS, Xia J, 2019.

Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis

Current Protocols in Bioinformatics, 68(1):1-128

[本文引用: 1]

Crozier J, Thomas SE, Aime MC, Evans HC, Holmes KA, 2006.

Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao

Plant Pathology, 55(6):783-791

DOI:10.1111/ppa.2006.55.issue-6      URL     [本文引用: 1]

Dearnaley J, Perotto S, Selosse M, 2016. Structure and development of orchid mycorrhizas. In: Martin F (ed.) Molecular mycorrhizal symbiosis. Wiley-Blackwell Press. Hoboken: 63-86

[本文引用: 1]

Deng WX, Zhao ML, Li YM, Wang ZL, Zhang K, Zhan FD, 2019.

Diversity of endophytic fungi associated with Bletilla striata roots

Mycosystema, 38(11):1907-1917 (in Chinese)

Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P, 2020.

Orchids and their mycorrhizal fungi: an insufficiently explored relationship

Mycorrhiza, 30(1):5-22

DOI:10.1007/s00572-020-00934-2      PMID:31982950      [本文引用: 1]

Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.

Fu BZ, Wang ZY, Wu JR, Zhao RL, Zhang JZ, Han CZ, 2012.

Alternaria alternata, India canna black leaf spot pathogen in Kunming

Mycosystema, 31(4):645-647 (in Chinese)

Gai XG, Xing XK, Guo SX, 2014.

Ecological research of orchid mycorrhizae: a review

Mycosystema, 33(4):753-767 (in Chinese)

Gao Y, Guo SX, Xing XK, 2019.

Fungal diversity and mechanisms of symbiotic germination of orchid seeds: a review

Mycosystema, 38(11):1808-1825 (in Chinese)

Gardes M, Bruns T, 1993.

ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts

Molecular Ecology, 2(2):113-118

DOI:10.1111/j.1365-294X.1993.tb00005.x      URL     [本文引用: 2]

Gebauer G, Meyer M, 2003.

15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association

New Phytologist, 160(1):209-223

DOI:10.1046/j.1469-8137.2003.00872.x      URL     [本文引用: 1]

Guo SX, 2016. Endophytic fungi biology of medicinal plant. Science Press, Beijing. 436-453(in Chinese)

Guo SX, Xu JT, 1990.

Study on seeds vitro germination of orchid

Seed, 5: 36-37+58 (in Chinese)

Hou TW, Jin H, Liu HX, An DJ, Luo YB, 2010.

The variations of mycorrhizal fungi diversity among different growing periods of the dominant orchids from two habitats in the Huanglong valley, Sichuan

Acta Ecologica Sinica, 30(13):3424-3432 (in Chinese)

Hou X, Guo Q, Wei W, Guo L, Guo D, Zhang L, 2018.

Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR

Molecules, 23(3):1-19

DOI:10.3390/molecules23010001      URL     [本文引用: 1]

Huang L, He XR, Zheng LM, Cai J, 2004.

Preliminary studies on mycorrhizal fungi in promoting the growth of orchid seedings from tissue culture

Chinese Journal of Tropical Crops, 25(1):36-38 (in Chinese)

Huang YH, Zhu GS, Liu ZY, Mao TF, 2007.

Primary study on mycorrhizal microstructure of Cremastra appendiculata (D. Don) Makino

Guizhou Agricultural Sciences, 35(1):16-17 (in Chinese)

Lee Y, Yang C, Gebauer G, 2015.

The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia

Annals of Botany, 116(3):423-435

DOI:10.1093/aob/mcv085      URL     [本文引用: 2]

Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, Mcculley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N, 2015.

Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe

Proceedings of the National Academy of Sciences, 112(35):10967-10972

[本文引用: 1]

Li GX, Ma KM, 2018.

Progress in the study of elevational patterns of soil microbial diversity

Acta Ecologica Sinica, 38(5):1521-1529 (in Chinese)

Lin M, Xiong H, Xiang X, Zhou Z, Liang L, Mei Z, 2020.

The effect of plant geographical location and developmental stage on root-associated microbiomes of Gymnadenia conopsea

Frontiers in Microbiology, 11:1-17

DOI:10.3389/fmicb.2020.00001      URL     [本文引用: 1]

Liu L, Li J, Zeng K, Jiang Y, Tu P, 2015.

Five new benzylphenanthrenes from Cremastra appendiculata

Fitoterapia, 103:27-32

DOI:10.1016/j.fitote.2015.03.003      URL     [本文引用: 1]

Liu XQ, Li XP, Yuan WK, Yuan QY, Qin BH, 2016.

Two new phenanthrene glucosides from Cremastra appendiculata and their cytotoxic activities

Natural Product Communications, 11(4):477-479

[本文引用: 1]

López-Chávez MY, Guillén-Navarro K, Bertolini V, Encarnación S, Hernández-Ortiz M, Sánchez- Moreno I, Damon A, 2016.

Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae)

Mycorrhiza, 26(5):353-365

DOI:10.1007/s00572-015-0676-x      PMID:26732875      [本文引用: 1]

Orchidaceae establish symbiotic relationships with fungi in the Rhizoctonia group, resulting in interactions beneficial to both organisms or in cell destruction in one of them (pathogenicity). Previous studies have focused mostly on terrestrial species with a few, preliminary studies, on epiphytes. To further our understanding of the molecular mechanisms involved in these symbioses, we evaluated the interaction between Oncidium sphacelatum Lindl. and the mycorrhizal fungus Thanatephorus sp. strain RG26 (isolated from a different orchid species) in vitro using morphometric and proteomic analyses. Evidence from the morphometric and microscopic analysis showed that the fungus promoted linear growth and differentiation of orchid protocorms during 98 days interaction. On day 63, protocorm development was evident, so we analyzed the physiological response of both organisms at that moment. Proteome results suggest that orchid development stimulated by the fungus apparently involves cell cycle proteins, purine recycling, ribosome biogenesis, energy metabolism, and secretion that were up-regulated in the orchid; whereas in the fungus, a high expression of proteins implicated in stress response, protein-protein interaction, and saccharides and protein biosynthesis were found in the symbiotic interaction. This is the first work reporting proteins differentially expressed in the epiphytic orchid-fungus interaction and will contribute to the search for molecular markers that will facilitate the study of this symbiosis in both wild orchids and those in danger of extinction.

Mujica MI, Pérez MF, Jakalski M, Martos F, Selosse MA, 2020.

Soil P reduces mycorrhizal colonization while favors fungal pathogens: observational and experimental evidence in Bipinnula (Orchidaceae)

FEMS Microbiology Ecology, 96(11):fiaa178

DOI:10.1093/femsec/fiaa178      URL     [本文引用: 1]

Rappé MS, Giovannoni SJ, 2003.

The uncultured microbial majority

Annual Review of Microbiology, 57:309-394

[本文引用: 1]

Seifert KA, 2009.

Progress towards DNA barcoding of fungi

Molecular Ecology Resources, 9(Suppl. 1):83-89

[本文引用: 1]

Shefferson RP, Weiss M, Kull T, Taylors DL, 2005.

High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium

Molecular Ecology, 14:613-626

DOI:10.1111/j.1365-294X.2005.02424.x      URL     [本文引用: 1]

Strathdee F, Free A, 2013. Denaturing gradient gel electrophoresis (DGGE). In: Makovets S (ed.) DNA electrophoresis (methods and protocols). Humana Press, Totowa. 145-157

[本文引用: 2]

Sun XY, Zhang WF, Liu HX, 2015.

In situ symbiotic seed germination, isolation and identification of effective mycorrhizal fungus in Paphiopedilum hirsutissimum (Orchidaceae)

Journal of Tropical and Subtropical Botany, 23(1):59-64 (in Chinese)

Wang WZ, Zhang MS, X, Wu YQ, Yan YY, Ye RH, 2017.

Media screening on seeds germination of Cremastra appendiculata

Northern Horticulture, 11:157-161 (in Chinese)

White T, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.) PCR Protocols: a guide to methods and applications. Academic Press, San Diego. 315-322

[本文引用: 1]

Wu HF, Song XQ, Liu HX, 2012.

Ex-situ symbiotic seed germination of Dendrobium catenatum

Acta Ecologica Sinica, 32(8):2491-2497 (in Chinese)

DOI:10.5846/stxb      URL    

Xu LL, Zhao MY, Li J, Li SQ, Gao LJ, Zhang Y, Xu J, 2019.

Correlation between vertical distribution of three Cypripedium species and composition of orchid mycorrhizal fungal community

Mycosystema, 38(6):811-821 (in Chinese)

Yagame T, Funabiki E, Nagasawa E, Fukiharu T, Iwase K, 2013.

Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae)

American Journal of Botany, 100(9):1823-1830

DOI:10.3732/ajb.1300099      URL     [本文引用: 3]

Yang PH, Xu ZW, Feng N, Lei YH, 2004.

Six new record species of Orchidaceae to Qinling Mountain

Acta Botanica Boreali-Occidentalia Sinica, 24(7):1188-1189 (in Chinese)

Yu HX, Wang CY, Tang M, 2013.

Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the Loess Plateau, Northwest China

The Scientific World Journal, 2013: 1-12

[本文引用: 3]

Yuan SF, Li MY, Fang ZY, Liu Y, Shi W, Pan B, Wu K, Shi JX, Shen B, Shen QR, 2016.

Biological control of tobacco bacterial wilt using Trichoderma harzianum, amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae

Biological Control, 92:164-171

DOI:10.1016/j.biocontrol.2015.10.013      URL     [本文引用: 1]

Zhang M, Wu S, Jie X, Zhang L, Jiang X, Du J, Qi J, Liu Z, Yang Y, 2006.

Effect of endophyte extract on micropropagation of Cremastra appendiculata (D. Don.) Makino (Orchidaceae)

Propagation of Ornamental Plants, 6(2):83-89

[本文引用: 1]

Zhang Y, Guo LD, 2012.

Progress of fungal DNA barcode

Mycosystema, 31(6):809-820 (in Chinese)

Zhu GS, 2009.

Establishment of a rice enhancer trap mutant library by T-DNA insertion

PhD Dissertation, Huazhong Agricultural University, Wuhan, 44-142 (in Chinese)

鲍士旦, 2000. 土壤农化分析. 第3版. 北京: 中国农业出版社. 14-106

[本文引用: 1]

柴新义, 陈双林, 2011.

青檀内生真菌菌群多样性的研究

菌物学报, 30(1):18-26

[本文引用: 1]

邓文祥, 赵漫丽, 李永梅, 王自林, 张坤, 湛方栋, 2019.

白及根部内生真菌多样性研究

菌物学报, 38(11):1907-1917

[本文引用: 1]

傅本重, 王政又, 伍建榕, 赵瑞琳, 张俊忠, 韩长志, 2012.

昆明美人蕉黑斑病菌——链格孢Alternaria alternata

菌物学报, 31(4):645-647

[本文引用: 1]

盖雪鸽, 邢晓科, 郭顺星, 2014.

兰科菌根的生态学研究进展

菌物学报, 33(4):753-767

[本文引用: 3]

高越, 郭顺星, 邢晓科, 2019.

兰科植物种子共生萌发真菌多样性及共生萌发机制研究进展

菌物学报, 38(11):1808-1825

[本文引用: 1]

郭顺星, 2016. 药用植物内生真菌生物学. 北京: 科学出版社. 436-453

[本文引用: 1]

郭顺星, 徐锦堂, 1990.

兰科植物种子无菌萌发的研究

种子, 1990(5):36-37+58

[本文引用: 1]

侯天文, 金辉, 刘红霞, 安德军, 罗毅波, 2010.

四川黄龙沟优势兰科植物菌根真菌多样性及其季节变化

生态学报, 30(13):3424-3432

[本文引用: 3]

黄磊, 贺筱蓉, 郑立明, 蔡谨, 2004.

促进兰花组培苗生长的墨兰菌根真菌研究初报

热带作物学报, 25(1):36-38

[本文引用: 1]

黄永会, 朱国胜, 刘作易, 毛堂芬, 2007.

杜鹃兰菌根结构显微观察初报

贵州农业科学, 35(1):16-17

[本文引用: 2]

厉桂香, 马克明, 2018.

土壤微生物多样性海拔格局研究进展

生态学报, 38(5):1521-1529

[本文引用: 2]

孙晓颖, 张武凡, 刘红霞, 2015.

带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定

热带亚热带植物学报, 23(1):59-64

[本文引用: 2]

王汪中, 张明生, 吕享, 吴彦秋, 颜跃跃, 叶睿华, 2017.

杜鹃兰种子萌发适宜培养基的筛选

北方园艺, 2017(11):157-161

[本文引用: 1]

吴慧凤, 宋希强, 刘红霞, 2012.

铁皮石斛种子的室内共生萌发

生态学报, 32(8):2491-2497

[本文引用: 1]

徐玲玲, 赵明阳, 李菁, 李书琪, 高丽君, 张焱, 许静, 2019.

不同海拔的三种杓兰属植物与菌根真菌群落组成相关性

菌物学报, 38(6):811-821

[本文引用: 2]

杨平厚, 徐振武, 冯宁, 雷颖虎, 2004.

秦岭兰科6种新记录植物

西北植物学报, 24(7):1188-1189

[本文引用: 2]

张宇, 郭良栋, 2012.

真菌DNA条形码研究进展

菌物学报, 31(6):809-820

[本文引用: 1]

朱国胜, 2009.

贵州特色药用兰科植物杜鹃兰和独蒜兰共生真菌研究与应用

华中农业大学博士论文,武汉. 44-142

[本文引用: 2]

/