中文  |  English

菌物学报, 2023, 42(1): 170-178 doi: 10.13346/j.mycosystema.220216

研究论文

中国灵芝属真菌的多样性与资源

崔宝凯1, 潘新华2, 潘峰2, 孙一翡1, 邢佳慧1, 戴玉成,1,*

1 北京林业大学生态与自然保护学院 微生物研究所,北京 100083

2 江西仙客来生物科技有限公司,江西 九江 332000

Species diversity and resources of Ganoderma in China

CUI Baokai1, PAN Xinhua2, PAN Feng2, SUN Yifei1, XING Jiahui1, DAI Yucheng,1,*

1 Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

2 Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang 332000, Jiangxi, China

收稿日期: 2022-06-13   接受日期: 2022-07-4  

基金资助: 第三次新疆综合科学考察(2021xjkk0505)

Corresponding authors: * yuchengdai@bjfu.edu.cn

Received: 2022-06-13   Accepted: 2022-07-4  

Fund supported: Third Xinjiang Scientific Expedition and Research Program(2021xjkk0505)

作者简介 About authors

戴玉成,北京林业大学二级教授,国务院政府特殊津贴和戴芳澜杰出成就奖获得者,全国优秀科技工作者现任中国菌物学会副理事长,《菌物学报》主编,从事大型真菌资源与系统分类研究30余年 , E-mail:yuchengdai@bjfu.edu.cn

摘要

灵芝属是大型真菌的一个重要类群,具有重要的经济价值、生态价值和文化价值。尽管国内外对灵芝属真菌的研究较多,但灵芝属真菌的分类一直存在诸多问题,我国过去报道的灵芝属真菌有114个分类单元,但其中很多的分类地位存在争议。本文基于凭证标本,确认我国目前发现的灵芝种类有40种,其中具有ITS分子序列的种类有39种,其他74个分类单元或为同物异名或为待定种。本文提供的中国39种灵芝的ITS序列可为今后准确鉴定灵芝的野生和栽培种类提供依据。

关键词: 灵芝; ITS序列; 药用真菌; 分类

Abstract

Ganoderma is one of the most important fungal genera of macrofungi with important economic, ecological and cultural values. Although many studies focused on the taxonomy of Ganoderma in China, the species diversity is still largely unclear. Taxa of Ganoderma previously recorded in China totalled 114, but the taxonomic status of many taxa are controversial. Based on study of voucher specimens, this paper summarized the species diversity and resources of Chinese Ganoderma. In total, 40 species are confirmed in China, including 39 species with available ITS sequence. The other 74 taxa of Ganoderma are treated as either synonyms or uncertainty. The selected ITS sequences of 39 Ganoderma species provide a basis for identification of Chinese Ganoderma species.

Keywords: Ganoderma; ITS sequences; medicinal fungi; taxonomy

PDF (536KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

崔宝凯, 潘新华, 潘峰, 孙一翡, 邢佳慧, 戴玉成. 中国灵芝属真菌的多样性与资源[J]. 菌物学报, 2023, 42(1): 170-178 doi:10.13346/j.mycosystema.220216

CUI Baokai, PAN Xinhua, PAN Feng, SUN Yifei, XING Jiahui, DAI Yucheng. Species diversity and resources of Ganoderma in China[J]. Mycosystema, 2023, 42(1): 170-178 doi:10.13346/j.mycosystema.220216

灵芝属Ganoderma P. Karst.是大型真菌的一个重要类群,隶属于担子菌门Basidiomycota、伞菌纲Agaricomycetes、多孔菌目Polyporales、灵芝科Ganodermataceae。尽管有些学者将灵芝属处理为多孔科Polyporaceae (He et al. 2019),但目前关于灵芝真菌的多数研究都是将其作为独立的科(Sun et al. 2022)。灵芝属种类的重要性体现在以下4个方面:一是其药用价值,灵芝在中国已经有两千多年的药用历史,并将2种灵芝(赤芝和紫芝)纳入《中华人民共和国药典》;2000年出版的《美国草药药典和治疗概要》也将灵芝列为其中(申进文等 2003)。二是灵芝作为吉祥物文化在中国历史悠久,灵芝如意、灵芝祥云和灵芝艺术等深受广大民众欢迎。三是灵芝作为木材腐朽菌的一个重要类群,其部分种类能够造成树木病害(戴玉成等 2000;戴玉成 2012),特别是对栽培的橡胶、合欢和油棕等树木的危害比较严重(Isha et al. 2020;Page et al. 2020)。四是灵芝属真菌能够分泌多种生物降解酶系,可以降解多种复杂的有机化合物,是担子菌中目前发现的含有降解木质纤维素所需降解酶基因数目最多的一类真菌(王庆福等 2015),可广泛应用于生物降解与生态环境保护等领域(Postemsky et al. 2017;Si et al. 2021)。因此,灵芝属真菌的经济价值、生态价值和文化价值使其一直是国内外真菌学研究的热点。

世界范围内最早报道灵芝种类的是英国,1781年,英国学者William Curtis最早将欧洲灵芝描述为牛肝菌的一个种Boletus lucidus Curtis (Moncalvo & Ryvarden 1997),后来真菌系统学鼻祖瑞典人Elias Magnus Fries发现灵芝虽然具有孔状的子实层体,但质地与牛肝菌不同,而更像多孔菌,因此在他撰写的《真菌系统》(Systema Mycologicum)一书中将欧洲灵芝组合为多孔菌的一个种Polyporus lucidus (Curtis) Fr. (Fries 1821)。1881年芬兰真菌学家Peter Adolph Karsten发现灵芝的担孢子与其他多孔菌不同,建立了灵芝属Ganoderma (其希腊原意为表面发光,即表面具漆状光泽),并将欧洲灵芝组合为Ganoderma lucidum (Curtis) P. Karst. (Karsten 1881)。因此,灵芝种类名副其实的名称是从1881年开始的,至今已经使用了140多年。

由于灵芝的重要价值,国内外对其进行了广泛的研究,截至2022年1月,SCI数据库中以灵芝属Ganoderma为关键词的论文有6 248篇(https://www.webofscience.com/wos/alldb/summary/77ece611-ffaf-4a9a-b0ac-548991cf1468-3fd09a61/relevance/1),其中最近20年(2002年1月‒ 2022年1月) SCI数据库发表以灵芝为关键词的论文有5 941篇(https://www.webofscience.com/wos/alldb/summary/63f1cc12-6ea7-455d-b3ca-2df29bbc5c82-3fd0b7ef/relevance/1)。中国知网数据库中以灵芝为主题的文献有13 532篇(https://kns.cnki.net/kns8/defaultresult/index),以灵芝为关键词的论文有2 972篇,其中期刊论文有2 262篇、学位论文有316篇、会议论文有148篇(https://kns.cnki.net/kns8/AdvSearch?dbprefix=CFLS & & crossDbcodes=CJFQ% 2CCDMD% 2CCIPD% 2CCCND% 2CCISD% 2CSNAD% 2CBDZK%2CCCJD% 2CCCVD% 2CCJFN)。最近20年(2002年1月‒ 2022年1月)发表的期刊论文为2 508篇,包括期刊论文1 836篇、学位论文311篇、会议论文144篇(https://kns.cnki.net/kns8/AdvSearch?dbprefix=CFLS & & crossDbcodes=CJFQ% 2CCDMD% 2CCIPD% 2CCCND% 2CCISD% 2CSNAD% 2CBDZK% 2CCCJD% 2CCCVD% 2CCJFN)。这些研究特别是近20年的研究极大地加深了人类对灵芝的认识。

到2021年12月,中国知网数据库发表灵芝综述文章423篇(主题词“灵芝+进展”),主要是灵芝多糖、三萜、免疫调节、抗肿瘤、化学成分与药理作用等方面的综述,发表灵芝多糖研究进展的综述论文54篇,灵芝三萜研究进展的综述论文22篇,灵芝抗肿瘤研究进展的综述论文19篇,其中篇名为《灵芝多糖的研究进展》的期刊论文11篇。

根据Index Fungorum (http://www.indexfunorum.org/Names/Names.asp) 统计,发表于或组合于灵芝属的分类单元(包括种、变种和变形)共有466条记录,除去同物异名、非有效发表或组合到其他属外,目前有181个分类单元(截止到2022年1月),其中有DNA序列的种类为95种(Sun et al. 2022)。

在2 000多年前我们的祖先就认识了灵芝,1907年法国真菌学家Patouillard (1907)基于当时的知识和研究水平,将中国的灵芝鉴定为欧洲灵芝Ganoderma lucidum这一学名,后来在中国具有重要影响的真菌学专著《中国的真菌》《中国真菌总汇》和《中国真菌志—灵芝科》中都将中国广泛分布和栽培的灵芝记载为G. lucidum (邓叔群 1963;戴芳澜 1979;赵继鼎和张小青 2000)。分子系统学技术的发展和应用,为人类科学认识灵芝种类提供了新的和精确的证据,研究发现中国广泛分布和栽培的灵芝与欧洲灵芝的重要形态性状(孔口新鲜时颜色、菌肉环区和菌管壁厚度)和分子序列等均有不同(Cao et al. 2012;崔宝凯和吴声华 2020),中国的灵芝为一个新种,其学名为Ganoderma lingzhi S.H. Wu, Y. Cao & Y.C. Dai。此外,我国发表的文献中经常使用“赤芝”,主要是因为我国药典里用“赤芝”代表灵芝,但“赤芝”是中药名称,不是灵芝的中文学名。“赤芝”实际上就是灵芝,由于传统原因,“赤芝”拉丁学名被定为Ganoderma lucidum,但实际上其拉丁学名应该是Ganoderma lingzhi

20世纪赵继鼎和张小青(2000)对我国灵芝进行了比较系统的报道,发现中国灵芝属种类有76个。21世纪以来,已经有多位青年学者以灵芝科或灵芝属为研究对象,开展了博士论文的研究(王冬梅 2005;王新存 2012;曹云 2013;邢佳慧 2019;孙一翡2022),对我国的灵芝种类和资源进行了梳理,到2022年初,我国文献记载的灵芝种类有114种,其中多数是基于形态学鉴定的结果。分子生物学数据为我们认识中国灵芝种类提供了新的证据,基于分子系统学和形态学相结合的研究,目前我国发现的灵芝种类有40种(表1),其中具有ITS分子序列的种类有39种(Sun et al. 2022)。对于灵芝的多数种类来说,ITS是可靠的区分序列,但对少数种类,例如白肉灵芝、欧洲灵芝和松杉灵芝,其ITS序列差异很小,但GenBank数据库中有关灵芝ITS的序列非常多,且长短不一,质量参差不齐,需慎重选用。中国过去报道的灵芝中还有75个分类单元没有分子序列,我们研究了这些分类单元的凭证材料,根据形态性状明确为已知种的,处理为同物异名;中国记录的描述与原始描述不一致的,处理为在中国目前没有分布;模式标本丢失及不育的、且无分子数据的,处理为待确定(表2)。

表1   中国目前存在的灵芝种类及其分布

Table 1  The confirmed species of Ganoderma and their distribution in China

中文学名
Chinese name
拉丁名
Scientific name
ITS序列
ITS sequences
国内分布
Distribution in China
参考文献
References
拟热带灵芝Ganoderma ahmadii无 None四川 SichuanSun et al. 2022
高山灵芝G. alpinumMZ354912 (holotype)四川、西藏、云南
Sichuan, Tibet, Yunnan
Sun et al. 2022
窄孢灵芝G. angustisporumMG279170 (holotype)福建、广东 Fujian, Guangdong邢佳慧2019 Xing 2019
树舌灵芝G. applanatumMZ354913吉林 JilinDai 2012
南方灵芝G. australeMF436675海南、云南 Hainan, YunnanDai 2012
中文学名
Chinese name
拉丁名
Scientific name
ITS序列
ITS sequences
国内分布
Distribution in China
参考文献
References
狭长孢灵芝G. boninenseKJ143906海南 Hainan王冬梅2005 Wang 2005
浅黄边灵芝G. bubalinomarginatumMZ354927 (holotype)广西 GuangxiSun et al. 2022
喜热灵芝G. calidophilumMN398337海南、云南 Hainan, YunnanSun et al. 2022
栗盖灵芝G. castaneumMZ354920 (holotype)海南 HainanSun et al. 2022
木麻黄灵芝G. casuarinicolaMG279173 (holotype)广东 Guangdong邢佳慧 2019 Xing 2019
楚雄灵芝G. chuxiongenseMZ354907 (holotype)云南 YunnanSun et al. 2022
滇中灵芝G. dianzhongenseMW750237 (holotype)云南 YunnanHe et al. 2021
椭圆孢灵芝G. ellipsoideumMH106867 (holotype)广东、海南、云南
Guangdong, Hainan, Yunnan
Hapuarachchi
et al. 2018
可食灵芝G. esculentumMW750242 (holotype)云南 YunnanHe et al. 2021
弯柄灵芝G. flexipesMZ354923广东、海南、云南
Guangdong, Hainan, Yunnan
Dai 2012
有柄灵芝G. gibbosumMH035681云南 YunnanLuangharn et al. 2020
广西灵芝G. guangxienseMZ354939 (holotype)广西 GuangxiSun et al. 2022
球孢灵芝G. hoehnelianumMG279178广西、海南、云南
Guangdong, Hainan, Yunnan
Sun et al. 2022
白肉灵芝G. leucocontextumKF011548 (holotype)四川、西藏、云南
Sichuan, Tibet, Yunnan
Li et al. 2015
赤芝(灵芝)G. lingzhiJQ781858 (holotype)湖北、安徽、湖南、江苏、江西、
山东、四川、天津、云南、浙江
Hubei, Anhui, Hunan, Jiangsu,
Jiangxi, Shandong, Sichuan,
Tianjin, Yunnan, Zhejiang
Cao et al. 2012
欧洲灵芝G. lucidumMG279181四川、云南 Sichuan, YunnanSun et al. 2022
大孔灵芝G. magniporumMZ354936广西、云南 Guangxi, YunnanSun et al. 2022
重盖灵芝G. multipileumMZ354896广东、中国台湾、云南
Guangdong; Taiwan, China; Yunnan
Dai 2012
异壳丝灵芝G. mutabileJN383977 (holotype)西藏、云南 Tibet, YunnanCao & Yuan 2012
无柄紫灵芝G. orbiformeMG279187海南、中国台湾 Hainan, Taiwan, ChinaWang et al. 2014
橡胶灵芝G. philippiiMG279188海南 HainanDai 2012
普洱灵芝G. puerenseMZ355012 (holotype)云南 YunnanSun et al. 2022
三都水灵芝G. sanduenseMK345450 (holotype)贵州 GuizhouHapuarachchi et al. 2019
山西灵芝G. shanxienseMK764268 (holotype)四川、山西 Sichuan, ShanxiLiu et al. 2019
四川灵芝G. sichuanenseJQ781877 (holotype)广东、广西、四川
Guangdong, Guangxi, Sichuan
Cao et al. 2012
紫芝G. sinenseMG279193广西、海南 Guangxi, HainanDai 2012
拟窄孢灵芝G. subangustisporumMZ354981 (holotype)云南 YunnanSun et al. 2022
拟弯柄灵芝G. subflexipesMZ354922 (holotype)广东、江西 Guangdong, JiangxiSun et al. 2022
通山灵芝G. tongshanenseMZ354975 (holotype)湖北 HubeiSun et al. 2022
热带灵芝G. tropicumMG279194广东、广西、海南
Guangdong, Guangxi, Hainan
Dai 2012
松杉灵芝G. tsugaeMG279195吉林、新疆 Jilin, XinjiangDai 2012
韦伯灵芝G. weberianumMK603804广东、广西
Guangdong, Guangxi
Dai 2012
维西灵芝G. weixienseMK302444 (holotype)云南 YunnanYe et al. 2019
威廉灵芝G. williamsianumMG279183海南、云南 Hainan, YunnanDai 2012
云岭灵芝G. yunlingenseMZ354915 (holotype)云南 YunnanSun et al. 2022

新窗口打开| 下载CSV


表2   中国报道有质疑或为同物异名的灵芝种类

Table 2  The uncertain species or synonyms of Ganoderma in China

中文学名
Chinese name
拉丁名
Scientific name
处理意见
Statements
参考文献
References
白边灵芝Ganoderma albomarginatum模式标本丢失,待确定 Holotype lost, uncertain邢佳慧 2019 Xing 2019
拟鹿角灵芝G. amboinense模式标本丢失,待确定 Holotype lost, uncertainMoncalvo & Ryvarden 1997
长管灵芝G. annulare= G. australeRyvarden 1989
黑灵芝G. atrum= G. flexipes曹云 2013 Cao 2013
闽南灵芝G. austrofujianense= G. sinense曹云 2013 Cao 2013
坝王岭灵芝G. bawanglingense= G. applanatum曹云 2013 Cao 2013
兼性灵芝G. bicharacteristicum模式标本不育,待确定
Holotype sterile, uncertain
邢佳慧2019
Xing 2019
褐灵芝G. brownii与原始描述不符, 中国无分布
Inconsistent with original description,
no distribution in China
王冬梅 2005
Wang 2005
鸡油菌状灵芝G. cantharelloideum= G. lucidum曹云 2013 Cao 2013
薄盖灵芝G. capense= G. weberianum王冬梅 2005 Wang 2005
紫铜灵芝G. chalceum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
澄海灵芝G. chenghaiense= G. multipileum曹云 Cao 2013
琼中灵芝G. chiungchungense模式标本丢失,待确定 Holotype lost, uncertain邢佳慧 2019 Xing 2019
背柄紫灵芝G. cochlear模式标本丢失,待确定 Holotype lost, uncertainMoncalvo & Ryvarden 1997
巨大灵芝G. colossus= Tomophagus colossus曹云 2013 Cao 2013
密纹灵芝G. crebrostriatum= G. mastoporum曹云 2013 Cao 2013
高盘灵芝G. cupulatiprocerum= G. duropora赵继鼎和张小青 2000
Zhao & Zhang 2000
弱光泽灵芝G. curtisii与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
邢佳慧 2019
Xing 2019
大青山灵芝G. daiqingshanense= G. multiplicatum曹云 2013 Cao 2013
密环灵芝G. densizonatum= G. orbiformeWang et al. 2014
吊罗山灵芝G. diaoluoshanense= G. mastoporum曹云 2013 Cao 2013
半圆灵芝G. dimidiatum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
唐氏灵芝G. donkii与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Moncalvo & Ryvarden 1997
中文学名
Chinese name
拉丁名
Scientific name
处理意见
Statements
参考文献
References
硬孔灵芝G. duropora与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
台湾灵芝G. formosanum= G. sinense曹云 2013 Cao 2013
拱状灵芝G. fornicatum= G. orbiformeWang et al. 2014
黄褐灵芝G. fulvellum= Fomes fulvellusSun et al. 2022
贵南灵芝G. guinanense= G. sinense曹云 2013 Cao 2013
贵州灵芝G. guizhouense模式标本丢失,待确定
Holotype lost, uncertain
邢佳慧 2019
Xing 2019
海南灵芝G. hainanense= G. flexipes曹云 2013 Cao 2013
尖峰岭灵芝G. jianfenglingense模式标本丢失,待确定
Holotype lost, uncertain
邢佳慧 2019
Xing 2019
昆明灵芝G. kunmingense模式标本不育,待确定 Holotype sterile, uncertain曹云 2013 Cao 2013
黎母山灵芝G. limushanense= G. orbiformeWang et al. 2014
层迭灵芝G. lobatum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
黄边灵芝G. luteomarginatum= G. sinense曹云 2013 Cao 2013
无柄紫灵芝G. mastoporum= G. orbiformeWang et al. 2014
华中灵芝G. mediosinense= G. sinense曹云 2013 Cao 2013
墨江灵芝G. meijiangense= G. williamsianumWang & Wu 2010
小孢灵芝G. microsporum= G. weberianum曹云 2013 Cao 2013
奇异灵芝G. mirabile与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
奇绒毛灵芝G. mirivelutinum= G. applanatum曹云 2013 Cao 2013
内蒙灵芝G. mongolicum= G. tsugae本研究 This study
黄灵芝G. multiplicatum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
邢佳慧 2019
Xing 2019
新日本灵芝G. neojaponicum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
王冬梅 2005
Wang 2005
亮黑灵芝G. nigrolucidum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
王冬梅 2005
Wang 2005
光亮灵芝G. nitidum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
赭漆灵芝G. ochrolaccatum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
壳状灵芝G. ostracodes与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
王冬梅 2005
Wang 2005
中文学名
Chinese name
拉丁名
Scientific name
处理意见
Statements
参考文献
References
小马蹄灵芝G. parviungulatum= G. flexipes曹云 2013 Cao 2013
佩氏灵芝G. petchii与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
弗氏灵芝G. pfeifferi与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
王冬梅 2005
Wang 2005
多分枝灵芝G. ramosissimum模式标本不育,待确定 Holotype sterile, uncertain曹云 2013 Cao 2013
任氏灵芝G. renii模式标本丢失,待确定 Holotype lost, uncertain曹云 2013 Cao 2013
无柄灵芝G. resinaceum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
邢佳慧 2019
Xing 2019
大圆灵芝G. rotundatum= G. multiplicatum曹云 2013 Cao 2013
三明灵芝G. sanmingense模式标本不育,待确定
Holotype sterile, uncertain
曹云 2013 Cao 2013
山东灵芝G. shandongense= Sinoganoderma shandongenseSun et al. 2022
上思灵芝G. shangsiense= G. hoehnelianumWang & Wu 2010
思茅灵芝G. simaoense模式标本不育,待确定
Holotype sterile, uncertain
曹云 2013
Cao 2013
具柄灵芝G. stipitatum= G. tropicum王冬梅 2005 Wang 2005
拟层状灵芝G. stratoideum模式标本丢失,待确定
Holotype lost, uncertain
邢佳慧 2019
Xing 2019
伞状灵芝G. subumbraculum= G. weberianum王冬梅 2005 Wang 2005
密纹薄灵芝G. tenue= G. weberianum曹云 2013 Cao 2013
山茶灵芝G. theaecola= G. multiplicatum曹云 2013 Cao 2013
西藏灵芝G. tibetanum模式标本很小,且质量不佳,无法
获取DNA;孔口每毫米4个,担孢
子10-13×7-7.5 µm,仅凭此模式无
法确定分类地位
Holotype is small with bad quality to get
DNA. Pores 4 per mm and basidiospores
10-13×7-7.5 µm. Depending on the type
is unable to identify its taxonomic status
本研究
This study
三角灵芝G. triangulum= G. applanatum曹云 2013 Cao 2013
镘形灵芝G. trulla与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
Sun et al. 2022
粗皮灵芝G. tsunodae= Trachyderma tsunodaeSun et al. 2022
马蹄状灵芝G. ungulatum= G. applanatum曹云 2013 Cao 2013
紫光灵芝G. valesiacum与原始描述不符,中国无分布
Inconsistent with original description,
no distribution in China
王冬梅 2005
Wang 2005
芜湖灵芝G. wuhuense模式标本丢失,待确定
Holotype lost, uncertain
邢佳慧 2019
Xing 2019
五指山灵芝G. wuzhishanense= G. cf. multipileum本研究 This study
兴义灵芝G. xingyiense模式标本丢失,待确定 Holotype lost, uncertain邢佳慧 2019 Xing 2019
镇宁灵芝G. zhenningense模式标本丢失,待确定 Holotype lost, uncertain邢佳慧 2019 Xing 2019

新窗口打开| 下载CSV


因此,基于上述研究,中国目前确定存在的灵芝属种类有40种,其他文献报道的分类单元或为已知种的同物异名、或与原始描述不符、或转移到其他属、或模式及描述不详、或模式标本不育、或命名不合法、或模式标本丢失等造成命名混乱。这些分类单元中的少数目前暂定为存疑种,其是否存在有待今后在模式产地采集到标本后进一步明确。本文提供的中国39种灵芝的ITS序列可为今后准确鉴定灵芝的野生和栽培种类提供依据。

在中国目前确认的40种灵芝中,栽培灵芝主要有如下4种:灵芝(赤芝)Ganoderma lingzhi Sheng H. Wu et al.,其自然分布于温带到亚热带,在全国均有栽培;紫芝Ganoderma sinense J.D. Zhao et al.,其自然分布于亚热带,主要在华东和华南栽培;白肉灵芝Ganoderma leucocontextum T.H. Li et al.,其自然分布于青藏高原及邻近地区的高海拔地区,在滇西北、西藏和四川有栽培;松杉灵芝Ganoderma tsugae Murrill,其自然分布于寒温带至温带,主要在东北地区栽培。

此外,国内还有多种其他灵芝种类栽培,但规模不大或只有俗名没有学名,或鉴定存在问题,例如无柄灵芝Ganoderma resinaceum Boud.在文献中报道有栽培(花纪等 2019),但该种只分布在欧洲(Ryvarden & Gilbertson 1993),中国目前没有分布。

参考文献

Cao Y, 2013. Taxonomy and phylogeny of Ganoderma in China. PhD Dissertation, University of Chinese Academy of Sciences, Beijing. 1-135 (in Chinese)

[本文引用: 27]

Cao Y, Wu SH, Dai YC, 2012.

Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”

Fungal Diversity, 56: 49-62

DOI:10.1007/s13225-012-0178-5      URL     [本文引用: 3]

Cao Y, Yuan HS, 2012.

Ganoderma mutabile sp. nov. from southwestern China based on morphological and molecular data

Mycological Progress, 12: 121-126

DOI:10.1007/s11557-012-0819-9      URL     [本文引用: 1]

Cui BK, Wu SH. 2020.

The scientific name of the widely cultivated Ganoderma species

Mycosystema, 39: 7-12 (in Chinese)

Dai YC, 2012.

Pathogenic wood-decaying fungi on woody plants in China

Mycosystema, 31: 493-509 (in Chinese)

[本文引用: 10]

Dai YC, 2012.

Polypore diversity in China with an annotated checklist of Chinese polypores

Mycoscience, 53: 49-80

DOI:10.1007/s10267-011-0134-3      URL    

Dai YC, Qin GF, Xu MQ, 2000.

The forest pathogens of root and butt rot on northeast China

Forest Research, 13: 15-22 (in Chinese)

Fries EM, 1821.

Systema mycologicum, sistens Fungorum Ordines, Genera et Species hucusque congnitas, quas ad normam methodi naturalis determina-vit, disposuit atque descripsit

Vol. 1. Gryphiswaldiae, Germania. 1-520

[本文引用: 1]

Hapuarachchi KK, Karunarathna SC, Phengsintham P, Yang HD, Kakumyan P, Hyde KD, Wen TC, 2019.

Ganodermataceae (Polyporales): diversity in greater mekong subregion countries (China, Laos, Myanmar, Thailand and Vietnam)

Mycosphere, 10: 221-309

DOI:10.5943/mycosphere/10/1/6      [本文引用: 1]

Taxa of Ganodermataceae have been widely used as traditional medicines for centuries in Asia. Despite several taxonomic investigations, relationships and classification of many species are still unresolved. Species in this family are either pathogenic, wood decaying and/or wood inhabiting. In this paper, we introduce, a collection of Ganodermataceae species based on fresh and dried specimens found within the Greater Mekong Subregion countries; China, Laos, Myanmar, Thailand and Vietnam. Amauroderma schomburgkii, A. rude, Haddowia longipes, Ganoderma lingzhi, G. luteomarginatum, G. subresinosum and G. tropicum from Laos, G. australe and G. multiplicatum from Myanmar, G. donkii from Thailand, G. adspersum from Thailand and Myanmar, G. flexipes, G. gibbosum, G. orbiforme, and G. neojaponicum from both Laos and Myanmar, are newly recorded species for these countries. We also identified A. schomburgkii and A. rude, based on morphology and the other species based on both morphology and DNA sequence data. Two species; G. nasalanense Hapuar., Pheng., & K.D. Hyde, sp. nov., and G. sandunense Hapuar., T.C. Wen & K.D. Hyde, sp. nov., are new to science and established with morphological and DNA sequence based evidence. All taxa collected are described and illustrated with coloured photographs. We present an updated phylogeny for Ganodermataceae based on nrLSU, ITS, nrSSU, TEF1 and RPB2 DNA sequence data and species relationships and classification are discussed.

Hapuarachchi KK, Karunarathna SC, Raspé O, de Silva KHWL, Thawthong A, Wu XL, Kakumyan P, Hyde KD, Wen TC, 2018.

High diversity of Ganoderma and Amauroderma (Ganodermataceae, Polyporales) in Hainan Island, China

Mycosphere, 9: 931-982

DOI:10.5943/mycosphere/9/5/1      URL    

He J, Luo ZL, Tang SM, Li YJ, Li SH, Su HY, 2021.

Phylogenetic analyses and morphological characters reveal two new species of Ganoderma from Yunnan Province, China

MycoKeys, 84: 141-162

DOI:10.3897/mycokeys.84.69449      URL     [本文引用: 2]

He MQ, Zhao RL, Kevin D, et al. (more than 20 authors), 2019.

Notes, outline and divergence times of Basidiomycota

Fungal Diversity, 99:105-367

DOI:10.1007/s13225-019-00435-4      URL     [本文引用: 1]

Hua J, Yan JQ, Huo GH, Zhang C, Hu DM, 2019.

Relationship of Ganoderma resinaceum cultivation formulas and accumulation of its function composition

Food Science and Technology, 44(6): 38-44 (in Chinese)

Isha A, Yusof NA, Shaari K, Osman R, Abdullah SNA, Wong MY, 2020.

Metabolites identification of oil palm roots infected with Ganoderma boninense using GC-MS-based metabolomics

Arabian Journal of Chemistry, 13: 6191-6200

DOI:10.1016/j.arabjc.2020.05.026      URL     [本文引用: 1]

Karsten PA, 1881.

Enumeratio boletinearum et polyporearum Fennicum, systemate novo dispositarium

Revue Mycologicum, 3: 16-19

[本文引用: 1]

Li TH, Hu HP, Deng WQ, Wu SH, Wang DM, Tsering T, 2015.

Ganoderma leucocontextum, a new member of the G. lucidum complex from southwestern China

Mycoscience, 56: 81-85

DOI:10.1016/j.myc.2014.03.005      URL     [本文引用: 1]

Liu H, Guo LJ, Li SL, Fan L, 2019.

Ganoderma shanxiense, a new species from northern China based on morphological and molecular evidence

Phytotaxa, 406: 129-136

DOI:10.11646/phytotaxa.406.2.4      URL     [本文引用: 1]

Luangharn T, Karunarathna SC, Mortimer PE, Hyde KD, Xu JC, 2020.

Morphology, phylogeny and culture characteristics of Ganoderma gibbosum collected from Kunming, Yunnan Province, China

Phyton-International Journal of Experimental Botany, 89: 743-764

[本文引用: 1]

Moncalvo JM, Ryvarden LA, 1997.

Nomenclatural study of the Ganodermataceae Donk

Synopsis Fungorum, 11: 1-114

[本文引用: 4]

Page DE, Glen M, Puspitasari D, Prihatini I, Gafur A, Mohammed CL, 2020.

Acacia plantations in Indonesia facilitate clonal spread of the root pathogen Ganoderma philippii

Plant Pathology, 69: 685-697

DOI:10.1111/ppa.13153      URL     [本文引用: 1]

Patouillard N, 1907.

Champignons du Kouy-tcheou

Monde d be Plant Series, 2: 31

[本文引用: 1]

Postemsky PD, Bidegain MA, Gonzʾalez-Matute R, Figlas ND, Cubitto MA, 2017.

Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum

Bioresource Technology, 231: 85-93

DOI:S0960-8524(17)30101-3      PMID:28199921      [本文引用: 1]

Solid-state fermentation was evaluated at the pilot-scale for the bioconversion and valorization of rice husks and straw (RSH), or sunflower seed hulls (SSH), into medicinal mushrooms and crude extracts, with laccase activity. The average mushroom yield was 56kg dry weight per ton of agro-residues. Laccase activity in crude aqueous extracts showed its maximum value of 10,927Ukg in RSH (day 10, Exudate phase) and 16,442Ukg in SSH (day 5, Full colonization phase), the activity at the Residual substrate phase being 511Ukg in RSH and 803Ukg in SSH, respectively. Crude extracts obtained with various protocols revealed differences in the extraction yields. Lyophilization followed by storage at 4°C allowed the preservation of laccase activity for more than one month. It is proposed that standard mushroom farms could increase their profits by obtaining laccase as a byproduct during the gaps in mycelium running.Copyright © 2017 Elsevier Ltd. All rights reserved.

Ryvarden L, 1989.

Type studies in the Polyporaceae-21. Species described by C.G. Lloyd in Cyclomyces, Daedalea, Favolus, Fomes, and Hexagonia

Mycotaxon, 35: 229-236

[本文引用: 1]

Ryvarden L, Gilbertson RL, 1993. European polypores 1. Synopsis Fungorum, 6: 1-387

[本文引用: 1]

Shen JW, Guo H, Cheng Y, 2003.

Prospects of Ganoderma spp. and its industry

The Farmers Consultant, 5: 19 (in Chinese)

Si J, Wu Y, Ma HF, Cao YJ, Sun YF, Cui BK, 2021.

Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes

Journal of Environmental Management, 299: 113619

DOI:10.1016/j.jenvman.2021.113619      URL     [本文引用: 1]

Sun YF, 2022. Taxonomy and phylogeny of Amauroderma s. lat. PhD Dissertation, Beijing Forestry University, Beijing. 1-126 (in Chinese)

[本文引用: 30]

Sun YF, Xing JH, He XL, Wu DM, Song CG, Liu S, Vlasák J, Gates G, Gibertoni TB, Cui BK, 2022.

Species diversity, systematic revision and molecular phylogeny of Ganodermataceae (Polyporales, Basidiomycota) with an emphasis on Chinese collections

Studies in Mycology, 101: 287-415

DOI:10.3114/sim.2022.101.05      PMID:36059897     

is one of the main families of macrofungi since species in the family are both ecologically and economically important. The double-walled basidiospores with ornamented endospore walls are the characteristic features of. It is a large and complex family; although many studies have focused on, the global diversity, geographic distribution, taxonomy and molecular phylogeny of still remained incompletely understood. In this work, taxonomic and phylogenetic studies on worldwide species of were carried out by morphological examination and molecular phylogenetic analyses inferred from six gene loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the second largest subunit of RNA polymerase II gene (), the translation elongation factor 1-α gene (), the small subunit mitochondrial rRNA gene (mtSSU) and the small subunit nuclear ribosomal RNA gene (nSSU). A total of 1 382 sequences were used in the phylogenetic analyses, of which 817 were newly generated, including 132 sequences of ITS, 139 sequences of nLSU, 83 sequences of, 124 sequences of, 150 sequences of mtSSU and 189 sequences of nSSU. The combined six-gene dataset included sequences from 391 specimens representing 146 taxa from. Based on morphological and phylogenetic analyses, 14 genera were confirmed in :,,,,,,,,,,,, and. Among these genera, is proposed for ; is proposed for ; is proposed to include taxa previously belonging to since is a homonym of a plant genus in the ; is proposed to include since is a homonym of a lichen genus in the. Twenty-three new species,.,,,,,,,,,,,,,,,,,,,,,, and are described. In addition, another 33 known species are also described in detail for comparison. Scanning electron micrographs of basidiospores of 10 genera in are provided. A key to the accepted genera of and keys to the accepted species of,,,, and are also provided. In total, 278 species are accepted as members of including 59 species distributed in China. B.K. Cui & Y.F. Sun, B.K. Cui & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun and B.K. Cui & Y.F. Sun; B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Vlasák, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Vlasák, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, J.H. Xing & Y.F. Sun, B.K. Cui, Vlasák & Y.F. Sun, B.K. Cui & Y.F. Sun, B.K. Cui & Y.F. Sun, B.K. Cui & Y.F. Sun, B.K. Cui & Y.F. Sun, B.K. Cui & Y.F. Sun and B.K. Cui & Y.F. Sun; : (Costa-Rezende ) B.K. Cui & Y.F. Sun, (Singer) B.K. Cui & Y.F. Sun, (Gulaid & Ryvarden) B.K. Cui & Y.F. Sun, (J.S. Furtado) B.K. Cui & Y.F. Sun, (J.D. Zhao & L.W. Xu) B.K. Cui, J.H. Xing & Y.F. Sun and (Yasuda ex Lloyd) B.K. Cui & Y.F. Sun. Sun Y-F, Xing J-H, He X-L, Wu D-M, Song C-G, Liu S, Vlasák J, Gates G, Gibertoni TB, Cui B-K (2022). Species diversity, systematic revision and molecular phylogeny of (, ) with an emphasis on Chinese collections. : 287-415. doi: 10.3114/sim.2022.101.05.© 2022 Westerdijk Fungal Biodiversity Institute.

Tai FL, 1979.

Sylloge fungorum sinicorum

Science Press, Beijing. 1-1527 (in Chinese)

Teng SC, 1963.

Fungi of China

Science Press, Beijing. 1-808 (in Chinese)

Wang DM, 2005. Phylogenetic study of Ganoderma in China. PhD Dissertation, University of Chinese Academy of Sciences, Beijing. 1-81 (in Chinese)

[本文引用: 10]

Wang DM, Wu SH, 2010.

Ganoderma hoehnelianum has priority over G

shangsiense, and G. williamsianum over G. meijiangense. Mycotaxon, 113: 343-349

[本文引用: 2]

Wang DM, Wu SH, Yao YJ, 2014.

Clarification of the concept of Ganoderma orbiforme with high morphological plasticity

PLoS One, 9: e98733

DOI:10.1371/journal.pone.0098733      URL     [本文引用: 5]

Wang QF, Huang QH, Liang L, Li QW, An XY, 2015. Research progress and potential application of lignindytic enzyme from Ganoderma spp. Chinese Journal of Topical Crops, 36(7): 1361-1367 (in Chinese)

Wang XC, 2012.

Phylogeny of Ganodermataceae

PhD Dissertation, University of Chinese Academy of Sciences, Beijing. 1-291 (in Chinese)

Xing JH, 2019.

Species diversity, taxonomy and phylogeny of Ganoderma

PhD Dissertation, Beijing Forestry University, Beijing. 1-158 (in Chinese)

[本文引用: 14]

Ye L, Karunarathna SC, Mortimer PE, Li HL, Qiu MH, Peng XR, Luangharn T, Li YJ, Promputtha I, Hyde KD, Xu JC, 2019.

Ganoderma weixiensis (Polyporaceae, Basidiomycota), a new member of the G. lucidum complex from Yunnan Province, China

Phytotaxa, 423: 75-86

DOI:10.11646/phytotaxa.423.2.3      URL     [本文引用: 1]

Zhao JD, Zhang XQ, 2000.

Flora fungorum sinicorum. Vol. 18. Ganodermataceae

Science Press, Beijing. 1-204 (in Chinese)

[本文引用: 1]

曹云, 2013.

中国灵芝属的系统学研究

中国科学院大学博士论文, 北京. 1-135

[本文引用: 27]

崔宝凯, 吴声华, 2020.

普遍栽培灵芝种类的拉丁学名

菌物学报, 39: 7-12

[本文引用: 1]

戴芳澜, 1979. 中国真菌总汇. 北京: 科学出版社. 1-1527

[本文引用: 1]

戴玉成, 2012.

中国木本植物病原木材腐朽菌研究

菌物学报, 31: 493-509

[本文引用: 1]

戴玉成, 秦国夫, 徐梅卿, 2000.

中国东北地区的立木腐朽菌

林业科学研究, 13: 15-22

[本文引用: 1]

邓叔群, 1963. 中国的真菌. 北京: 科学出版社. 1-808

[本文引用: 1]

花纪, 颜俊清, 霍光华, 张诚, 胡殿明, 2019.

无柄灵芝代料栽培基质营养组成与其功能成分累积的关系研究

食品科技, 44(6): 38-44

[本文引用: 1]

申进文, 郭恒, 程雁, 2003.

灵芝及其产业发展前景

农家参谋, 5: 19

[本文引用: 1]

孙一翡, 2022.

假芝类真菌的分类与系统发育研究

北京林业大学博士论文, 北京. 1-126

[本文引用: 1]

王冬梅, 2005.

中国灵芝属系统发育研究

中国科学院大学博士论文, 北京. 1-81

[本文引用: 11]

王庆福, 黄清铧, 梁磊, 李奇伟, 安玉兴, 2015.

灵芝木质素降解酶研究及其潜在应用进展

热带作物学报, 36(7): 1361-1367

[本文引用: 1]

王新存, 2012.

灵芝科系统发育研究

中国科学院大学博士论文, 北京. 1-291

[本文引用: 1]

邢佳慧, 2019.

灵芝属的物种多样性、分类与系统发育研究

北京林业大学博士论文, 北京. 1-158

[本文引用: 15]

赵继鼎, 张小青, 2000.

中国真菌志第18卷灵芝科

北京: 科学出版社. 1-204

[本文引用: 3]

/