中文  |  English

菌物学报, 2023, 42(1): 196-216 doi: 10.13346/j.mycosystema.220405

研究论文

陕南秦巴山区黏菌的物种组成和分布格局

窦文俊,, 李姝, 彭雪嫣, 亓宝, 王琦,,*

吉林农业大学 食药用菌教育部工程研究中心 吉林 长春 130118

Species composition and distribution pattern of myxomycetes in Qinba mountainous area of southern Shaanxi Province

DOU Wenjun,, LI Shu, PENG Xueyan, QI Bao, WANG Qi,,*

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China

收稿日期: 2022-10-14   接受日期: 2022-11-3  

基金资助: 国家重点研发计划(2021YFD1600401)
国家自然科学基金(31770011)

Corresponding authors: * q_wang2006@126.com;ORCID: WANG Qi (0000-0002-9431-7281)

Received: 2022-10-14   Accepted: 2022-11-3  

Fund supported: National Key Research and Development Program of China(2021YFD1600401)
National Natural Science Foundation of China(31770011)

作者简介 About authors

ORCID:DOUWenjun(0000-0002-4883-0527) 。

王琦,吉林农业大学二级教授,植物保护学院菌物学科带头人,中国菌物学会理事,吉林省食药用菌协会副会长,国务院政府特殊津贴获得者,国家食用菌产业技术体系岗位专家从事黏菌、菌物资源等研究 , E-mail:q_wang2006@126.com

摘要

为揭示陕西省南部秦巴山区腹地黏菌物种多样性与分布特征,对陕南地区的42个地点开展了黏菌资源调查,共获得1 021份标本,根据形态特征鉴定为5目9科26属119种。分析黏菌物种组成与多样性指数表明,陕南地区的优势种为蛇形半网菌Hemitrichia serpula,相对多度为6.37%,该地具有较高黏菌物种多样性(Hʹ=6.24),同时秦岭黏菌物种多样性指数(Hʹ=6.19)高于大巴山(Hʹ=5.28)。黏菌物种多样性在不同植被类型下差异显著,针阔叶混交林最高,针叶林最低,群落分布相似性较低,表明植被类型的变化会影响该地区黏菌的物种组成。

关键词: 黏菌; 秦岭; 大巴山; 分布特征; 物种多样性

Abstract

To reveal the diversity and distribution characteristics of myxomycetes in Qinba mountainous area of southern Shaanxi Province, 1 021 specimens were collected from 42 sites in the area. Based on morphological characteristics, 119 species in 26 genera of 9 families belonging to 5 orders were identified. The dominant species was Hemitrichia serpula with relative abundance of 6.37%. There was a high diversity of myxomycetes in this area (Hʹ=6.24). The species diversity index (Hʹ=6.19) in Qinling Mountains was higher than that in Daba Mountains (Hʹ=5.28). The species diversity of myxomycetes was significantly different with the difference of vegetation types. The diversity was the highest in mixed broadleaf-conifer forest and that in coniferous forest was the lowest. The similarity of community distribution in different forest type was low, indicating that vegetation types significantly affected the species composition of myxomycetes in this area.

Keywords: myxomycetes; Qinling Mountains; Daba Mountains; distribution characteristics; species diversity

PDF (822KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

窦文俊, 李姝, 彭雪嫣, 亓宝, 王琦. 陕南秦巴山区黏菌的物种组成和分布格局[J]. 菌物学报, 2023, 42(1): 196-216 doi:10.13346/j.mycosystema.220405

DOU Wenjun, LI Shu, PENG Xueyan, QI Bao, WANG Qi. Species composition and distribution pattern of myxomycetes in Qinba mountainous area of southern Shaanxi Province[J]. Mycosystema, 2023, 42(1): 196-216 doi:10.13346/j.mycosystema.220405

黏菌(myxogastrea或myxomycetes)是变形虫门下单系类群的真核生物,主要特征在于其生命周期的生殖阶段表现出“amoeboid activity”行为(Adl et al. 2019),黏菌分布范围广泛,常见于温暖潮湿的森林生态系统中(李玉等 2008a;Lado et al. 2018),主要捕食细菌、真菌,促进生态系统的碳和营养循环(Stout 1980;Stephenson & Rojas 2022)。

秦巴山区西起青藏高原东缘,东至华北平原西南部,是我国重要的“地理-生态”过渡带(白燕 2020),陕南秦巴山区独特的地理位置与气候类型跨越暖温带与亚热带,具有高度复杂的自然环境条件及丰富的生物资源,植被景观垂直变化显著,自下而上为常绿落叶阔叶林混交林、落叶阔叶林、针阔叶混交林、针叶林和高山草甸等(岳明 2015),是我国重要的生物“基因库”,是研究我国包括菌物在内的生物多样性的热点地区(Li et al. 2008;Dai et al. 2009;戴玉成等 2021;宋玉等 2022)。秦巴山区属暖温带-北亚热带过渡气候区,森林覆盖率高,温暖湿润,为黏菌的生长提供了适宜的条件。相关研究也表明亚热带地区的生态环境适宜黏菌生长(王高伟等 2017;李敏等 2021),研究发现在浙江天目山的树栖黏菌的物种组成与采集季节和树皮pH相关(Liu et al. 2013);在河南宝天曼国家自然保护区中黏菌多样性主要与采样月份和森林类型相关,而非海拔(Gao et al. 2018);此外,Li et al. (2021)研究亚热带森林黏菌组成的时空分布及动态变化时发现不同微生境中影响黏菌物种分布的影响因子不同,树皮栖生黏菌物种主要受空间变量的影响,而枯枝落叶栖生的黏菌物种更多受气候因素影响。

目前对秦巴山区黏菌的报道主要为地区名录、发表新种、物种多样性研究(周宗璜和李玉 1983;Li & Li 1989;Chen et al. 1999;刘福杰等 2010;戴群等 2011;李姝 2012;朱鹤 2012;高扬等 2018;李敏等 2021),如中国科学院神农架真菌地衣考察队(1989)在湖北神农架进行科考时发现黏菌6目10科29属89种,Zhang & Li (2015, 2016, 2017)在河南和湖北发现3个黏菌新种,分别为Dictydiaethalium dictyosporangium B. Zhang & Yu Li、Comatricha clavicolumella B. Zhang & Yu Li和 Stemonitis planusis B. Zhang & Yu Li。但是对陕南秦巴山区缺少系统性黏菌物种多样性和分布研究,因此,本研究的目的是:(1) 调查陕南地区黏菌物种组成和多样性,进一步明晰秦岭和大巴山的黏菌物种多样性和分布特征;(2) 探索在陕南地区的秦岭和西段大巴山(常绿落叶阔叶混交林、落叶阔叶林、针阔叶混交林和针叶林) 4种植被类型中黏菌分布现状,为研究黏菌在我国的分布格局和地理演化提供基础数据。

1 材料与方法

1.1 采集区域

本研究在陕南秦巴山区(105°52′32.41″- 109°59′44.6″ E,31°45′17.8″-34°3′28.97″ N,海拔585-2 467 m)开展,包括关中谷地、秦岭山脉、汉江谷地和大巴山脉,秦岭、大巴山西段的米仓山、化龙山、太平山,由西向东横贯陕南。黏菌资源调查时间为2019年6-9月和2020年7-8月,对秦岭、大巴山西段地区的42个(表1)地点通过随机踏查法对主要4种植被类型(海拔585-835 m为常绿落叶阔叶混交林、海拔836-1 113 m为落叶阔叶林、海拔1 198-1 630 m为针阔叶混交林、海拔1 688-2 467 m为针叶林)的生境进行野外黏菌资源调查,共采集黏菌标本1 021份。

表1   本研究采集地点信息

Table 1  The information of collecting locations in this study


City

County
采集地点
Collecting location
海拔
Altitude (m)
生境
Habitat
商洛
Shangluo
柞水县
Zhashui County
金盆村
Jinpen Village
1 080落叶阔叶林
Broad-leaved deciduous forest
牛背梁国家自然保护区
Niubeiliang National Nature Reserve
1 413针阔叶混交林
Mixed broadleaf-conifer forest
西安
Xi’an
周至县
Zhouzhi County
楼观台镇实验林场
Louguantai Experimental Forest
692常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
户县
Hu County
太平国家森林公园
Taiping National Forest Park
836落叶阔叶林
Broad-leaved deciduous forest
朱雀森林公园
Rosefinch Forest Park
1 630针阔叶混交林
Mixed broadleaf-conifer forest
蓝田县
Lantian County
玉山风景区
Yushan Scenic Spot
1 198针阔叶混交林
Mixed broadleaf-conifer forest
长安区
Chang’an District
翠华山
Cuihua Mountain
858落叶阔叶林
Broad-leaved deciduous forest
宝鸡
Baoji
渭滨区
Weibin District
钟岩山
Zhongyan Mountain
1 028落叶阔叶林
Broad-leaved deciduous forest
凤县
Feng County
通天河国家森林公园
Tongtianhe National Forest Park
1 395针阔叶混交林
Mixed broadleaf-conifer
forest
太白县
Taibai County
青峰峡森林公园
Qingfengxia Forest Park
1 688针叶林
Coniferous forest
闲云岭森林公园
Xianyunling Forest Park
1 867针叶林
Coniferous forest
大岭云海
Dalingyunhai
2 467针叶林
Coniferous forest
上店房林场
Shangdianfang Forest
1 738针叶林
Coniferous forest
国道244
National Road-244
1 416针阔叶混交林
Mixed broadleaf-conifer
forest
汤峪
Tangyu
835常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
周至县
Zhouzhi County
泥峪
Niyu
833常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
汉中
Hanzhong
洋县
Yang County
长河村
Changhe Village
755常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
青石垭
Qingshiya
911落叶阔叶林
Broad-leaved deciduous
forest

City

County
采集地点
Collecting location
海拔
Altitude (m)
生境
Habitat
张家沟村
Zhangjiagou Village
678常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
佛坪县
Foping County
磨石沟口
Moshigoukou
685常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
堰头上
Yantoushang
733常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
留坝县
Liuba County
瓦子沟
Wazigou
1 799针叶林
Coniferous forest
城固县
Chenggu County
庙沟
Miaogou
870落叶阔叶林
Broad-leaved deciduous
forest
西乡县
Xixiang County
安梁上
Anliangshang
823常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
略阳县
Lueyang County
五龙洞国家森林公园
Wulongdong National Forest Park
1 354针阔叶混交林
Mixed broadleaf-conifer
forest
宁强县
Ningqiang County
太阳镇
Taiyang Town
758常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
东丽村
Dongli Village
647常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
南郑县
Nanzheng County
红寺湖
Hongsihu
608常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
安康
Ankang
镇坪县
Zhenping County
鸡冠峡村
Jiguanxia Village
1 027落叶阔叶林
Broad-leaved deciduous
forest
马镇村
Mazhen Village
1 246针阔叶混交林
Mixed broadleaf-conifer forest
三坝村
Sanba Village
1 113落叶阔叶林
Broad-leaved deciduous forest
化龙山国家级自然保护区正河垭保护站
Hualong Mountain National Nature
Reserve Zhengheya Station
2 180针叶林
Coniferous forest
化龙山国家级自然保护区白家乡保护站
Hualong Mountain National Nature
Reserve Baijiaxiang Station
894落叶阔叶林
Broad-leaved deciduous forest
岚皋县
Langao County
家福堂村
Jiafutang Village
717常绿落叶阔叶混交林
Evergreen and deciduous
broad-leaved forest
新湾村
Xinwan Village
845落叶阔叶林
Broad-leaved deciduous forest

新窗口打开| 下载CSV


1.2 形态鉴定

采用体视显微镜(Zeiss ICOC-ZSA302)观察子实体形态宏观特征并进行描述记录,使用镊子挑取部分组织至载玻片,滴加5% KOH溶液后进行固定、制片、封片,在光学显微镜(LEICA-DM1000)下观察黏菌子实体微观结构,参考The Myxomycete Biota of Japan、《中国真菌志——黏菌卷一、二》、Les Myxomycètes、《中国生物物种名录 第三卷 菌物(黏菌 卵菌)》(Yamamoto 1998;李玉等 2008a, 2008b, 2018;Michel et al. 2011)等黏菌资料进行形态分类学鉴定,并依据Hernández-Crespo & Lado (2005-2022)命名。

1.3 数据分析

根据标本鉴定结果对不同山脉、不同植被类型下的黏菌进行物种组成分析,包括优势科(≥10种)和优势属(≥6种)的划分;物种相对多度(relative abundance, RA):通过采集获得的某种黏菌的样本数占所获全部黏菌样本数的百分率;黏菌多样性指数采用香农-威纳指数(Hʹ)计算公式(Pielou 1975;Magurran 1988),如下:Hʹ=−∑[(Pi)×ln (Pi)],其中Pi表示黏菌i样本数占所获全部黏菌样本数的比例;群落分布相似性指数(CJ)计算公式(Chao et al. 2005),如下:CJ=c/(a+bc),其中CJ表示Jaccard相似性指数,ab分别为两个群落的物种数,c为两个群落的共有物种数;采用EstimataS v 9.1.0 (Colwell 2019)软件分析判断抽样是否充分;采用Python v 3.9.12软件中matplotlib v 2.2.3库的pyplot模块绘制Venn图。

2 结果与分析

2.1 抽样度评估

通过野外资源调查,在秦巴山区获得黏菌119种,采用随机抽样方式共获得256个样本,根据软件EstimataS v 9.1.0分析得到的ACE (abundance-based coverage estimator)、ICE (incidence-based coverage estimator)和Chao1数据绘制黏菌物种累计曲线(图1)。随着样本量的增加Chao1估计值的置信区间逐渐减小,在95%的置信度下最高黏菌种类为121种,最低为78种,黏菌物种随着样本量的增加已不会再显著增多,表明本研究的采样较为充分,可以进行黏菌物种多样性分析。

图1

图1   陕南秦巴山区黏菌的物种累计曲线

Fig. 1   Individual-based species accumulation curves of myxomycetes in Qinba Mountainous area of southern Shaanxi Province.


2.2 陕南秦巴山区黏菌的物种组成

通过野外调查共获得1 021份黏菌标本,经形态学鉴定隶属于5目9科26属119种,其中点状无丝菌Licea punctiformis G.W. Martin、小无丝菌Licea pusilla Schrad.、高山筒菌Tubifera montana Leontyev, Schnittler & S.L. Stephenson、大筛菌Cribraria macrocarpa Schrad.、苔生煤绒菌Fuligo muscorum Alb. & Schwein.等50种为陕西省新记录。经统计黏菌物种数量,按照相对多度划分,蛇形半网菌Hemitrichia serpula为最明显的优势种,相对多度为6.37%,其次为灰团网菌Arcyria cinerea,相对多度为4.80%,长发丝菌Stemonaria longa和两瓣绒泡菌Physarum bivalve的相对多度依次为3.23%、3.13%,相对多度在1%-3%的共有26种,其他89种的相对多度均在1%以下(表2)。陕南秦巴山区黏菌优势科有5个,分别为团毛菌科Trichiaceae (占总物种数26.89%)、发网菌科Stemonitaceae (占总物种数23.53%)、绒泡菌科Physaraceae (占总物种数23.53%)、筛菌科Cribrariaceae (占总物种数10.08%)和钙皮菌科Didymiaceae (占总物种数9.24%);优势属有7个,分别为绒泡菌属Physarum (占总物种数15.13%)、团网菌属Arcyria (占总物种数13.45%)、筛菌属Cribraria (占总物种数10.08%)、发网菌属Stemonitis (占总物种数9.24%)、钙皮菌属Didymium (占总物种数6.72%)、团毛菌属Trichia (占总物种数6.72%)和拟发网菌属Stemonitopsis (占总物种数5.04%) (表3),基于秦巴山区腹地陕南地区发现的119种黏菌物种的相对多度得出秦巴山区黏菌物种多样性指数(Hʹ)为6.24,说明陕南地区具有较高的物种丰富度。

表2   陕南秦巴山区黏菌的物种多样性及其相对多度

Table 2  Diversity and relative abundance of myxomycetes in Qinba Mountainous area of southern Shaanxi Province


Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
刺轴菌目
Echinosteliales
刺轴菌科
Echinosteliaceae
刺轴菌属
Echinostelium
*刺轴菌
E. minutum de Bary
腐木
Rotten wood
-0.200.20
无丝菌目
Liceales
无丝菌科
Liceaceae
无丝菌属
Licea
*点状无丝菌
L. punctiformis
G.W. Martin
腐木
Rotten wood
0.10-0.10
*小无丝菌
L. pusilla Schrad.
腐木
Rotten wood
0.10-0.10
线膜菌科
Reticulariaceae
粉瘤菌属
Lycogala
粉瘤菌
L. epidendrum (L.) Fr.
腐木
Rotten wood
0.590.100.69
小粉瘤菌
L. exiguum Morgan
腐木
Rotten wood
0.390.200.59
筒菌属
Tubifera
*高山筒菌
T. montana
Leontyev, Schnittler
& S.L. Stephenson
腐木
Rotten wood
0.10-0.10
线膜菌属
Reticularia
线膜菌
R. lycoperdon Bull.
腐木
Rotten wood
-0.100.10
筛菌科
Cribrariaceae
筛菌属
Cribraria
灯笼菌
C. cancellata (Batsch)
Nann. -Bremek.
腐木,苔藓
Rotten wood, moss
1.270.491.76
半网灯笼菌
C. mirabilis
(Rostaf.) Massee
腐木
Rotten wood
0.390.290.68
*黄褐筛菌
C. aurantiaca
Schrad.
腐木,苔藓
Rotten wood, moss
2.550.22.75
紫筛菌
C. violacea Rex
腐木
Rotten wood
0.1-0.10
*大筛菌
C. macrocarpa
Schrad.
腐木
Rotten wood
0.29-0.29
*细筛菌
C. tenella Schrad.
腐木
Rotten wood
0.10-0.10
小筛菌
C. microcarpa
(Schrad.) Pers.
腐木
Rotten wood
0.69-0.69
*暗小筛菌
C. oregana H.C.
Gilbert
腐木
Rotten wood
0.10-0.10
*栗褐筛菌
C. vulgaris Schrad.
腐木
Rotten wood
0.10-0.10

Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
*混淆筛菌
C. confusa Nann.
-Bremek. & Y. Yamam.
腐木
Rotten wood
0.10-0.10
宽肋筛菌
C. martinii
Nann. -Bremek.
腐木
Rotten wood
0.20-0.20
锈红筛菌
C. ferruginea Meylan
腐木
Rotten wood
0.20-0.20
绒泡菌目
Physarales
绒泡菌科
Physaraceae
光果菌属
Leocarpus
光果菌
L. fragilis (Dicks.)
Rostaf.
落叶
Fallen leaves
0.880.201.08
煤绒菌属
Fuligo
煤绒菌
F. septica (L.)
Wiggers
腐木
Rotten wood
0.200.490.69
*白煤绒菌
F. cinerea (Schwein.)
Morgan
腐木
Rotten wood
-0.290.29
*苔生煤绒菌
F. muscorum Alb.
& Schwein.
腐木
Rotten wood
-0.100.10
高杯菌属
Craterium
高杯菌
C. minutum (Leers) Fr.
枯枝,草茎
Dry twigs, grass
0.690.391.08
白头高杯菌
C. leucocephalum
(Pers.) Ditmar
枯枝
Dry twigs
0.390.390.78
*暗高杯菌
C. concinnum Rex
枯枝
Dry twigs
-0.390.39
绒泡菌属
Physarum
*钙核绒泡菌
P. nucleatum Rex
腐木
Rotten wood
0.390.390.78
刚丝绒泡菌
P. rigidum (G. Lister)
G. Lister
腐木
Rotten wood
0.29-0.29
*细弱绒泡菌
P. tenerum Rex
腐木
Rotten wood
0.880.491.37
绿绒泡菌
P. viride (Bull.) Pers.
腐木
Rotten wood
1.570.592.16
白柄绒泡菌
P. leucopus Link
腐木
Rotten wood
0.690.290.98
两瓣绒泡菌
P. bivalve Pers.
枯枝
Dry twigs
2.640.493.13
玫瑰绒泡菌
P. roseum Berk.
& Broome.
腐木
Rotten wood
0.590.290.88

Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
皱皮绒泡菌
P. gilkeyanum
H.C. Gilbert
腐木
Rotten wood
0.78-0.78
*黄头绒泡菌
P. flavicomum Berk.
腐木
Rotten wood
0.69-0.69
淡黄绒泡菌
P. melleum (Berk.
& Broome) Massee
落叶
Fallen leaves
0.880.491.37
垂头绒泡菌
P. album (Bull.) Chevall.
腐木
Rotten wood
0.781.272.05
*金色绒泡菌
P. auripigmentum
G.W. Martin
落叶
Fallen leaves
0.78-0.78
*灰白绒泡菌
P. vernum Sommerf.
落叶
Fallen leaves
1.57-1.57
*黄褐绒泡菌
P. brunneolum
(Phillip.) Massee
树皮
Bark
0.200.490.69
膜壁绒泡菌
P. badhamioides S.L.
Chen & Y. Li
腐木
Rotten wood
0.59-0.59
灰绒泡菌
P. cinereum (Batsch)
Pers.
枯枝,落叶
Dry twigs, fallen leaves
0.201.081.28
*盘头绒泡菌
P. pezizoideum (Jungh.)
Pavill. & Lagarde
腐木
Rotten wood
0.39-0.39
*青铜绒泡菌
P. psittacinum Ditmar
腐木
Rotten wood
0.39-0.39
钙丝菌属
Badhamia
*巨孢钙丝菌
B. macrospora H.Z. Li
腐木
Rotten wood
0.20-0.20
*灰堆钙丝菌
B. cinerascens G.W. Martin
腐木
Rotten wood
0.39-0.39
*黑柄钙丝菌
B. affinis Rostaf.
腐木
Rotten wood
0.78-0.78
钙皮菌科
Didymiaceae
钙皮菌属
Didymium
黄柄钙皮菌
D. iridis (Ditmar) Fr.
落叶
Fallen leaves
0.590.881.47
小钙皮菌
D. minus (Lister) Morgan
落叶
Fallen leaves
0.390.390.78
黑柄钙皮菌
D. nigripes (Link) Fr.
枯枝,落叶
Dry twigs, fallen leaves
0.88-0.88
*小晶钙皮菌
D. eximium Peck
落叶
Fallen leaves
0.49-0.49

Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
暗孢钙皮菌
D. melanospermum
(Pers.) T. Macbr.
腐木
Rotten wood
0.39-0.39
鳞钙皮菌
D. squamulosum (Alb.
& Schwein.) Fr.
枯枝,落叶
Dry twigs,
fallen leaves
1.181.182.36
*卵形钙皮菌
D. ovoideum
Nann. -Bremek.
落叶
Fallen leaves
0.29-0.29
*软骨钙皮菌
D. leoninum Berk.
& Broome.
苔藓
Moss
0.20-0.20
双皮菌属
Diderma
辐射双皮菌
D. radiatum (L.) Morgan
腐木
Rotten wood
1.57-1.57
*粉红双皮菌
D. testaceum
(Schrad) Pers.
落叶
Fallen leaves
0.200.690.89
*灰色双皮菌
D. cinereum Morgan
落叶
Fallen leaves
1.27-1.27
团毛菌目
Trichiales
团毛菌科
Trichiaceae
团毛菌属
Trichia
网孢团毛菌
T. favoginea (Batsch)
Pers.
腐木
Rotten wood
1.570.592.16
*鲜黄团毛菌
T. lutescens (Lister) Lister
腐木
Rotten wood
0.490.390.88
*叉尖团毛菌
T. persimilis Karsten
腐木
Rotten wood
1.08-1.08
*大红团毛菌
T. affinis de Bary
腐木,苔藓,落叶
Rotten wood, moss,
fallen leaves
0.69-0.69
环壁团毛菌
T. varia (Pers.) Pers.
腐木
Rotten wood
0.49-0.49
刺丝团毛菌
T. scabra Rostaf., Mon.
腐木
Rotten wood
0.29-0.29
直立团毛菌
T. erecta Rex
腐木
Rotten wood
0.39-0.39
朦纹团毛菌
T. contorta (Ditmar)
Rostaf.
腐木
Rotten wood
0.69-0.69
团网菌属
Arcyria
*小红团网菌
A. minuta Buchet
腐木
Rotten wood
0.39-0.39
灰团网菌
A. cinerea (Bull.) Pers.
腐木,苔藓,落叶
Rotten wood, moss,
fallen leaves
3.231.574.80

Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
*大团网菌
A. major (G. Lister) Ing
腐木
Rotten wood
0.88-0.88
*灰绿团网菌
A. glauca A. Lister
腐木
Rotten wood
0.10-0.10
*环丝团网菌
A. annulifera Lister
& Torrend
腐木
Rotten wood
0.20-0.20
粉红团网菌
A. incarnata (Pers. ex
J.F. Gmel.) Pers.
腐木,落叶
Rotten wood,
fallen leaves
0.390.490.88
暗红团网菌
A. denudata (L.) Wettst.
腐木
Rotten wood
0.980.491.47
鲜红团网菌
A. insignis Kalchbr.
& Cooke
腐木
Rotten wood
0.88-0.88
*果形团网菌
A. pomiformis (Leers) Rostaf.
腐木
Rotten wood
0.49-0.49
黄垂网菌
A. obvelata (Oeder)
Onsberg
腐木
Rotten wood
0.29-0.29
橙黄团网菌
A. abietina (Wigand)
Nann. -Bremek.
腐木
Rotten wood
0.29-0.29
锈色团网菌
A. ferruginea Sauter
腐木
Rotten wood
0.20-0.20
异色团网菌
A. versicolor Phill.
腐木
Rotten wood
0.10-0.10
暗红垂网菌
A. oerstedii Rostaf.
腐木
Rotten wood
0.20-0.20
大红团网菌
A. affinis Rostaf.
腐木
Rotten wood
0.78-0.78
蓝灰团网菌
A. nigella Emoto
腐木
Rotten wood
0.10-0.10
半网菌属
Hemitrichia
蛇形半网菌
H. serpula (Scop.)
Rostaf.
腐木,落叶,泥土
Rotten wood, fallen
leaves, clod
4.801.576.37
棒形半网菌
H. clavata (Pers.) Rostaf.
腐木,泥土
Rotten wood, clod
0.781.862.64
细柄半网菌
H. calyculata (Speg.) Farr
腐木,苔藓
Rotten wood, moss
2.150.692.84
变毛菌属
Metatrichia
暗红变毛菌
M. vesparium (Batsch)
Nann. -Bremek.
腐木
Rotten wood
1.67-1.67

Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
盖碗菌属
Perichaena
灰盖碗菌
P. grisea Q. Wang,
Y. Li & J.K. Bai
腐木
Rotten wood
0.59-0.59
金孢盖碗菌
P. chrysosperma
(Currey) Lister
腐木
Rotten wood
1.57-1.57
扁盖碗菌
P. depressa Libert
腐木
Rotten wood
1.47-1.47
盖碗菌
P. corticalis (Batsch)
Rostaf.
腐木
Rotten wood
0.59-0.59
散丝菌科
Dianemaceae
纹丝菌属
Calomyxa
纹丝菌
C. metallica (Berk.) Nieuwl.
腐木
Rotten wood
0.20-0.20
发网菌目
Stemonitales
发网菌科
Stemonitaceae
颈环菌属
Collaria
弧线颈环菌
C. arcyrionema (Rostaf.)
Nann. -Bremek. & Ing
腐木
Rotten wood
0.880.100.98
*紫褐颈环菌
C. lurida (Lister)
Nann. -Bremek.
腐木
Rotten wood
0.49-0.49
发菌属
Comatricha
黑发菌
C. nigra (Pers.) Schroet.
腐木
Rotten wood
0.88-0.88
松发菌
C. laxa Rostaf.
腐木,落叶
Rotten wood, fallen leaves
0.100.690.79
*长毛发菌
C. longipila Nann. -Bremek.
腐木
Rotten wood
0.29-0.29
*浅丝发菌
C. pellucida G.
Moreno & Illana
树皮
Bark
0.10-0.10
*圆头发菌
C. elegans (Racib.) G. Lister
腐木
Rotten wood
0.29-0.29
空柄菌属
Macbrideola
*空柄菌
M. martinii (Alexop.
& Benek) Alexop.
腐木
Rotten wood
0.59-0.59
叉丝菌属
Paradiacheopsis
刺孢叉丝菌
P. acanthodes (Alexop.)
Nann. -Breme.
腐木
Rotten wood
0.69-0.69
发丝菌属
Stemonaria
长发丝菌
S. longa (Peck) Nann.
-Bremek., R. Sharma &
Y.Yamam.
腐木,苔藓,
落叶,树皮
Rotten wood, moss,
fallen leaves, bark
1.861.373.23
*疏网发丝菌
S. laxiretis Nann.
-Bremek. & Y.Yamam.
腐木
Rotten wood
-0.490.49

Order

Family

Genus

Speceies
基质
Substrate
相对多度
RA (%)
秦岭
Qinling
Mts.
大巴山
Daba
Mts.
合计
Total
发网菌属
Stemonitis
美发网菌
S. splendens Rostaf.
腐木
Rotten wood
0.59-0.59
灰褐发网菌
S. pallida Wingate
腐木,落叶
Rotten wood, fallen leaves
-0.100.10
黑发网菌
S. nigrescens Rex
树皮
Bark
0.690.491.18
小发网菌
S. virginiensis Rex
腐木
Rotten wood
0.200.200.40
褐发网菌
S. fusca Roth
腐木
Rotten wood
0.880.781.66
*细发网菌
S. graciliformis Nann.
-Bremek., K.G. Mukerji
& Pasricha
腐木,树皮
Rotten wood, bark
0.780.691.47
锈发网菌
S. axifera (Bull.) T. Macbr.
腐木
Rotten wood
1.180.691.87
*法罗恩发网菌
S. farrensis T.N. Lakh.
& K.G. Mukerji
腐木,苔藓
Rotten wood, moss
-0.200.20
团孢发网菌
S. uvifera T. Macbr.
腐木
Rotten wood
0.10-0.10
*平截发网菌
S. plana B. Zhang & Yu Li
腐木
Rotten wood
0.100.100.20
*膜丝发网菌
S. marjana Y. Yamam.
腐木
Rotten wood
0.10-0.10
拟发网菌属
Stemonitopsis
*网孢拟发网菌
S. reticulata (H.C. Gilbert)
Nann. -Bremek. & Y. Yamam.
腐木
Rotten wood
-0.100.10
半网拟发网菌
S. hyperopta (Meyl.)
Nann. -Bremek.
腐木
Rotten wood
0.100.290.39
香蒲拟发网菌
S. typhina (F.H. Wigg.)
Nann. -Bremek.
腐木
Rotten wood
0.20-0.20
*暗褐拟发网菌
S. aequalis (Peck) Y. Yamam.
腐木
Rotten wood
0.39-0.39
细丝拟发网菌
S. gracilis (G. Lister) Nann.
-Bremek.
腐木
Rotten wood
-0.100.10
亚丛拟发网菌
S. subcaespitosa (Peck)
Nann. -Breme.
腐木
Rotten wood
0.10-0.10

*表示该种为陕西省新记录;-表示未知

* Represents new record in Shaanxi Province; - Represents unknown.

新窗口打开| 下载CSV


表3   陕南秦巴山区黏菌发生频次统计

Table 3  The frequency statistics of myxomycetes in Qinba Mountainous area of southern Shaanxi Province


Order
目占比
Order proportion (%)

Family
科占比
Family proportion (%)

Genus
属占比
Genus proportion (%)
刺轴菌目
Echinosteliales
0.84刺轴菌科
Echinosteliacea
0.84刺轴菌属
Echinostelium
0.84
无丝菌目
Liceales
15.13无丝菌科
Liceaceae
1.68无丝菌属
Licea
1.68
线膜菌科
Reticulariaceae
3.36粉瘤菌属
Lycogala
1.68
筒菌属
Tubifera
0.84
线膜菌属
Reticularia
0.84
筛菌科
Cribrariaceae
10.08筛菌属
Cribraria
10.08
绒泡菌目
Physarales
32.77绒泡菌科
Physaraceae
23.53光果菌属
Leocarpus
0.84
煤绒菌属
Fuligo
2.52
高杯菌属
Craterium
2.52
绒泡菌属
Physarum
15.13
钙丝菌属
Badhamia
2.52
钙皮菌科
Didymiaceae
9.24钙皮菌属
Didymium
6.72
双皮菌属
Diderma
2.52
团毛菌目
Trichiales
27.73团毛菌科
Trichiaceae
26.89团毛菌属
Trichia
6.72
团网菌属
Arcyria
13.45
半网菌属
Hemitrichia
2.52
变毛菌属
Metatrichia
0.84
盖碗菌属
Perichaena
3.36
散丝菌科
Dianemaceae
0.84纹丝菌属
Calomyxa
0.84
发网菌目
Stemonitales
23.53发网菌科
Stemonitaceae
23.53颈环菌属
Collaria
1.68
发菌属
Comatricha
4.20
空柄菌属
Macbrideola
0.84
叉丝菌属
Paradiacheopsis
0.84
发丝菌属
Stemonaria
1.68
发网菌属
Stemonitis
9.24
拟发网菌属
Stemonitopsis
5.04

新窗口打开| 下载CSV


在所发现的119种黏菌中,秦岭发现109种,大巴山发现51种。秦岭黏菌主要的生长基质为腐木,其中大红团毛菌Trichia affinis、灰团网菌Arcyria cinerea和长发丝菌Stemonaria longa不仅在腐木上生长,还在苔藓和落叶上生长,同时还发现蛇形半网菌Hemitrichia serpula和棒形半网菌Hemitrichia clavata可以在泥块上生长,小晶钙皮菌Didymium eximium和卵形钙皮菌Didymium ovoideum仅在落叶上生长,黄褐绒泡菌Physarum brunneolum和浅丝发菌Comatricha pellucida仅生于树皮上,软骨钙皮菌Didymium leoninum仅生于苔藓上;大巴山黏菌物种主要的生长基质为腐木,灯笼菌Cribraria cancellata、法罗恩发网菌Stemonitis farrensis、黄褐筛菌Cribraria aurantiaca、细柄半网菌Hemitrichia calyculata不仅在腐木上生长,还在苔藓上存在,而灰绒泡菌Physarum cinereum和鳞钙皮菌Didymium squamulosum仅在枯枝、落叶上生长。

2.3 陕南地区秦岭和大巴山黏菌物种多样性差异

比较陕南地区秦岭和大巴山的黏菌组成发现,秦岭和大巴山的黏菌组成都以绒泡菌目、发网菌目、团毛菌目的黏菌为主,但在群落组成上有明显差异。秦岭和大巴山共有属为16个,分别为发菌属Comatricha、发丝菌属Stemonaria、发网菌属Stemonitis、粉瘤菌属Lycogala、颈环菌属Collaria、拟发网菌属Stemonitopsis、筛菌属Cribraria、光果菌属Leocarpus、煤绒菌属Fuligo、高杯菌属Craterium、绒泡菌属Physarum、钙皮菌属Didymium、双皮菌属Diderma、团毛菌属Trichia、团网菌属Arcyria和半网菌属Hemitrichia。而有8个属(叉丝菌属Paradiacheopsis、空柄菌属Macbrideola、筒菌属Tubifera、无丝菌属Licea、变毛菌属Metatrichia、盖碗菌属Perichaena、纹丝菌属Calomyxa和钙丝菌属Badhamia)仅在秦岭分布,有2个属(刺轴菌属Echinostelium和线膜菌属Reticularia)仅在大巴山分布,在黏菌物种数量上,秦岭依旧明显高于大巴山(图2)。秦岭和大巴山共有种为41种;暗红变毛菌Metatrichia vesparium、小晶钙皮菌Didymium eximium、卵形钙皮菌Didymium ovoideum和软骨钙皮菌Didymium leoninum等68种黏菌仅在秦岭内被发现;暗高杯菌Craterium concinnum、法罗恩发网菌Stemonitis farrensis、刺轴菌Echinostelium minutum和疏网发丝菌Stemonaria laxiretis等10黏菌仅在大巴山内被发现(图3)。秦岭和大巴山内黏菌群落相似性指数为0.33,结果显示在不同山区虽然共享部分黏菌种类,但群落之间中等不相似,对比秦岭和大巴山内黏菌的物种多样性指数发现,秦岭中109种黏菌的香农-威纳多样性指数(Hʹ=6.19)高于大巴山中51种黏菌的多样性指数(Hʹ=5.28),个体数量也高于大巴山,黏菌多样性组成差异显著。

图2

图2   陕南地区秦岭和大巴山黏菌物种组成比较

Fig. 2   Comparison of specific composition of myxomycetes between Qinling Mountains and Daba Mountains in southern Shaanxi Province.


图3

图3   陕南地区秦岭和大巴山黏菌物种数量韦恩图

Fig. 3   Venn diagram of the number of myxomycetes in Qinling Mountains and Daba Mountains of southern Shaanxi Province.


2.4 陕南地区不同生境植被类型下黏菌物种多样性分布差异

陕南地区的黏菌物种多样性在不同生境植被类型下有显著差异。秦岭内采集到109种黏菌,4种植被类型下共有黏菌物种数为6种,分别为两瓣绒泡菌Physarum ivalve、淡黄绒泡菌Physarum melleum、灰团网菌Arcyria cinerea、蛇形半网菌Hemitrichia serpula、棒形半网菌Hemitrichia clavata和细柄半网菌Hemitrichia calyculata。常绿落叶阔叶混交林内黏菌物种数为34种,落叶阔叶林内黏菌物种数为63种,针阔叶混交林内黏菌物种数为67种,针叶林内黏菌物种数为14种。比对不同植被类型内黏菌的物种数量,针叶林内的黏菌物种数最少,以团毛菌目为主含有9种,朦纹团毛菌Trichia contorta、大红团网菌Arcyria affinis和蓝灰团网菌Arcyria nigella仅分布于针叶林;落叶阔叶林内,以绒泡菌目为主含有21种,黄褐绒泡菌Physarum brunneolum、卵形钙皮菌Didymium ovoideum等22种仅分布于落叶阔叶林;针阔叶混交林内叶林内的黏菌物种数最多,以绒泡菌目为主含有22种,暗高杯菌Craterium concinnum、玫瑰绒泡菌Physarum roseum、皱皮绒泡菌Physarum gilkeyanum等24种仅分布于针阔叶混交林;常绿落叶阔叶混交林内以绒泡菌目为主,含有15种,软骨钙皮菌Didymium leoninum、纹丝菌Calomyxa metallica等12种仅分布于常绿落叶阔叶混交林(图4A)。

图4

图4   陕南秦巴山区不同生境植被类型下黏菌物种数量韦恩图

A:秦岭. B:大巴山. EF:常绿落叶阔叶混交林;BF:落叶阔叶林;MF:针阔叶混交林;CF:针叶林

Fig. 4   Venn diagram of species diversities of myxomycetes in different vegetation types in Qinba mountainous area of southern Shaanxi Province.

A: Qinling Mts. B: Daba Mts. EF: Evergreen and deciduous broad-leaved forest; BF: Broad-leaved deciduous forest; MF: Mixed broadleaf-conifer forest; CF: Coniferous forest.


大巴山内采集到51种黏菌,4种植被类型下共有黏菌物种数为6种,分别为两瓣绒泡菌Physarum bivalve、淡黄绒泡菌Physarum melleum、灰团网菌Arcyria cinerea、蛇形半网菌Hemitrichia serpula、棒形半网菌Hemitrichia clavata和细柄半网菌Hemitrichia calyculata。常绿落叶阔叶混交林内黏菌物种数为33种,落叶阔叶林内黏菌物种数为20种,针阔叶混交林内黏菌物种数为26种,针叶林内黏菌物种数为17种。比对不同植被类型内黏菌的物种数量发现,针叶林内的黏菌物种数最少,以团毛菌目为主含有6种,光果菌Leocarpus fragilis、半网灯笼菌Cribraria mirabilis和灯笼菌Cribraria cancellata仅分布于针叶林;常绿落叶阔叶混交林内的黏菌物种数最多,以绒泡菌目为主含有13种,白柄绒泡菌Physarum leucopus、小钙皮菌Didymium minus等14种仅分布于常绿落叶阔叶混交林;落叶阔叶林内以团毛菌目为主含有 8种,玫瑰绒泡菌Physarum roseum仅分布于落叶阔叶林;针阔叶混交林内,以绒泡菌目为主含有10种,钙核绒泡菌Physarum nucleatum、细弱绒泡Physarum tenerum和网孢拟发网菌Stemonitopsis reticulata仅分布于针阔叶混交林(图4B)。

总体上,陕南地区秦岭和大巴山黏菌的物种组成数量,香农-威纳多样性指数在针叶林内(Hʹ=3.84)最低,在针阔叶混交林内(Hʹ=5.76)最高,针阔叶混交林内发生的黏菌物种丰富程度最高。落叶阔叶林和针叶林共享黏菌18种,群落相似性系数为0.22;落叶阔叶林和针阔叶混交林共享黏菌40种,群落相似性系数为0.40;常绿落叶阔叶混交林和针阔叶混交林共享黏菌33种,群落相似性系数为0.34;常绿落叶阔叶混交林和落叶阔叶林共享黏菌32种,群落相似性系数为0.36;常绿落叶阔叶混交林与针叶林共享黏菌15种,群落相似性系数为0.23;针阔叶混交林和针叶林共享黏菌18种,群落相似性系数为0.24,虽然共享部分黏菌,但群落相似性较低,说明在该地区植被类型的变化会影响黏菌的物种组成。

3 讨论

本研究首次在秦巴山区腹地陕南地区黏菌物种多样性进行系统性调研,调查到黏菌5目9科26属119种,其中刺轴菌Echinostelium minutum、点状无丝菌Licea punctiformis等50种为陕西省新记录,黄褐筛菌Cribraria aurantiaca、香蒲拟发网菌 Stemonitopsis typhina等62种为世界广泛分布种。秦巴山区地跨甘肃陇南市、四川、陕西、重庆、河南和湖北,其主体在本研究所在的陕南。本研究结果与Chen et al. (1999)的调查结果相比,新增黏菌79种,有27种未采集到;与同被划分为秦巴山区的河南省内乡县宝天曼国家级自然保护区(Gao et al. 2018)调查结果相比,新增68种,有39种未采集到。这些未采集到的黏菌主要集中于无丝菌目和绒泡菌目,造成这种现象的原因可能是:(1) 无丝菌目黏菌个体较小易被忽视;(2) 采样方式和时期不同导致;(3) 本研究调查的大部分区域属于景区,人工干涉频繁,同时也未进行湿室培养。此前已在约2.13%的秦巴山区开展黏菌资源调查,如太白山、牛背梁国家级自然保护区和神农架保护区等(周宗璜和李玉 1983;Li & Li 1989;中国科学院神农架真菌地衣考察队 1989;陈萍等 2006;刘福杰等 2010;Gao et al. 2018;高扬等 2018),而此次调查面积约占秦巴山区的34.27%,仍有63.6%的区域未有报道。由于陕南地区处于亚热带-温带过渡地带,黏菌物种的组成和分布兼具亚热带和温带的黏菌区系特征,如软骨钙皮菌Didymium leoninum和细弱绒泡菌Physarum tenerum在亚热带地区分布较广(高扬和陈双林 2021;李敏等 2021),如大团网菌Arcyria major和亚丛拟发网菌Stemonitopsis subcaespitos在北温带地区分布较广(陈小姝等 2012)。同时也有一些罕见种,如已知主要分布在日本的疏网发丝菌Stemonaria laxiretis (Nannenga-Bremekamp & Yamamoto 1990)、西班牙的浅丝发菌Comatricha pellucida (Moreno et al. 1992)和印度的细发网菌Stemonitis graciliformis (Nannenga-Bremekamp et al. 1984),这些物种的发现也为西北黏菌区系与日本、印度、欧洲的联系提供证据。

多样性指数显示陕南地区具有很高的物种多样性,但是秦岭和大巴山的物种组成差异显著。相对多度结果显示前3种黏菌(蛇形半网菌Hemitrichia serpula、灰团网菌Arcyria cinerea和长发丝菌Stemonaria longa)在该地区群落中占优势地位,反映出蛇形半网菌Hemitrichia serpula、灰团网菌Arcyria cinerea和长发丝菌Stemonaria longa对于自然环境的要求宽泛,在该地区分布较广。秦岭黏菌的多样性指数高于大巴山,一方面可能由于秦岭和大巴山的地理位置不同,长期以来对我国黏菌多样性研究主要集中于秦岭山脉以北的温带地区,并证实温带地区黏菌物种多样性高于热带地区黏菌物种多样性(Stephenson et al. 1993;Takahashi & Hada 2010;Novozhilov et al. 2017;赵凤云等 2021),黏菌的繁殖依靠孢子随风力传播(Stephenson et al. 2004;Schnittler et al. 2006),但由于秦岭山脉对水汽有阻滞作用,使南北气流无法交换(蒋冲 2013;李金辉等 2022),影响了黏菌孢子的传播;另一方面,可能由于秦岭和大巴山的植被类型不同,秦岭以落叶阔叶林为主,大巴山以常绿落叶阔叶混交林为主,相较于常绿落叶阔叶混交林来说,黏菌更偏好生长于落叶阔叶林中(Liu et al. 2013, 2015;Takahashi 2013;Nguyen et al. 2020;李敏和陈双林 2021)。在本次调查中发现,秦岭的地表、林下凋落物高于大巴山的地表、林下凋落物,凋落物降解速度低于大巴山,研究表明凋落量随着纬度增加而下降,常绿落叶阔叶混交林的凋落量(6.955 hm−2·a−1)大于落叶阔叶林(4.773 hm−2·a−1) (廖军和王新根 2000),其降解菌物种类也有相同趋势(武英达等 2021),而凋落物降解速度随着纬度增加而增加,亚热带凋落物分解速率是温带的2倍左右(Louzada et al. 1997;Lorenz et al. 2000;Loranger et al. 2002;Masaki et al. 2005),Adamonytė et al. (2013)报道黏菌分布由富营养向寡营养递减,因此秦岭的基质可能具有比大巴山更丰富的营养,更利于黏菌生长和分布。

黏菌多样性与植被类型之间有着密切的关系(Stephenson 2011),群落的相似性指数显示落叶阔叶林与针阔叶混交林相似性指数最高,针阔叶混交林与针叶林相似性指数最低,陕南地区不同生境植被类型下黏菌群落的组成差异明显,针阔混交林内黏菌香农-威纳多样性指数最高,说明针阔混交林为黏菌提供了较为稳定的生长环境。不同的植被类型分布着一些特定的黏菌种类,如蓝灰团网菌Arcyria nigella仅在针叶林发现,软骨钙皮菌Didymium leoninum仅在常绿落叶阔叶混交林,这一结果与Gao et al. (2018)的报道一致,但是在针叶林下黏菌的丰富度和香农-威纳指数均最低,与Gao et al. (2019)的研究结果正好相反,猜测可能在针叶林中黏菌多以游动胞或者黏变形体形式存在于土壤中,因此会和子实体的调查结果不同。本研究还发现两瓣绒泡菌Physarum bivalve、淡黄绒泡菌Physarum melleum等6种黏菌均被4种植被类型共享,反映出即便分为秦岭和大巴山2个地区,由于2个地区的地理位置相近,对于这6种黏菌所需要的营养环境也会有所相似。

秦巴山区蕴藏着丰富的黏菌资源,对于物种多样性研究有着巨大潜力,本研究对陕南秦巴山区的黏菌物种资源进行较大程度地补充,丰富了我国黏菌物种资源信息和分布情况,关于中国亚热带、温带地区黏菌物种多样性的研究可以在秦巴山区进一步开展,充分考虑秦岭-大巴山对于我国生物地理的重要性,更为系统地探索温带和亚热带地区黏菌物种多样性、区系组成和地理分布格局。

致谢

感谢李玉院士的帮助和指导,感谢师兄魏书威在野外资源调查过程中给予的帮助,感谢师妹王柏力、李明新在撰写论文时提供的帮助,感谢柞水李玉院士工作站提供实验协助。

参考文献

Adamonytė G, Iršėnaitė R, Motiejūnaitė J, Taraškevičius R, Matuleviciute D, 2013.

Myxomycetes in a forest affected by great cormorant colony: a case study in Western Lithuania

Fungal Diversity, 59: 131-146

DOI:10.1007/s13225-012-0203-8      URL     [本文引用: 1]

Adl SM, Bass D, Lane CE, et al. (more than 20 authors), 2019.

Revisions to the classification, nomenclature, and diversity of eukaryotes

Journal of Eukaryot Microbiology, 66(1): 4-119

DOI:10.1111/jeu.12691      URL     [本文引用: 1]

Bai Y, 2020.

Development of the spatio-temporal variations dataset of NDVI in Qinling-Daba Mountains of China (2000-2019)

Journal of Global Change Data and Discovery, 4: 346-353 (in Chinese)

Chao A, Chazdon RL, Colwell RK, Shen TJ, 2005.

A new statistical approach for assessing similarity of species composition with incidence and abundance data

Ecology Letters, 8: 148-159

DOI:10.1111/j.1461-0248.2004.00707.x      URL     [本文引用: 1]

Chen P, Xu MQ, Chen SL, 2006.

Notes on Myxomycetes from Gansu Province

Journal of Gansu Sciences, 18(3): 35-38 (in Chinese)

Chen SL, Li Y, Zhang XC, 1999.

A checklist of Myxomycetes in the Qingling Mountains

Journal of Anhui Agricultural University, 26(3): 306-309

[本文引用: 2]

Chen XS, Gu S, Song XX, Li S, Wang Q, Li Y, 2012.

Floristics of myxomycetes in Changchun region, China

Mycosystema, 5: 799-807 (in Chinese)

Colwell RK, 2019. EstimateS: statistical estimation of species richness and shared species from samples. Version 9.1.0. http://purl.oclc.org/estimatas

URL     [本文引用: 1]

Dai Q, Chen SL, Li Y, 2011.

Myxomycetes resources from Niubeiliang Nature Reserve of Tsinling Moutains

2011 Annual Meeting of Mycological Society of China, 32 (in Chinese)

Dai YC, Yuan HS, Wang HC, Yang F, Wei YL, 2009.

Polypores (Basidiomycota) from Qin Mts. in Shaanxi Province, central China

Annales Botanicci Fennici, 46(1): 54-61

[本文引用: 1]

Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J, 2021.

Diversity and systematics of the important macrofungi in Chinese forests

Mycosystema, 40(4): 770-805 (in Chinese)

Dai YC, Yuan HS, Wang HC, Yang F, Wei YL, 2009.

Polypores (Basidiomycota) from Qin Mts. in Shaanxi Province, central China

Annales Botanicci Fennici, 46(1): 54-61

Fungal and Lichen Expedition to Shennongjia, Chinese Academy of Sciences, 1989.

Fungi and lichens of Shennongjia

World Publishing Corp, Beijing. 1-514 (in Chinese)

Gao Y, Chen SL, 2021.

Research progress on distribution and ecology of Myxogastrea

Mycosystema, 40(10): 2537-2549 (in Chinese)

Gao Y, Yan SZ, Wang GW, He G, Chen SL, 2018.

Myxomycete diversity and ecology in the Baotianman National Nature Reserve, a subtropical mountain forest in central China

Fungal Ecology, 35: 10-19

DOI:10.1016/j.funeco.2018.06.002      URL     [本文引用: 4]

Gao Y, Yan SZ, Wang GW, He G, Chen SL, 2018.

Notes on Myxomycetes from Baotianman National Nature Reserve of Henan Province

Journal of Fungal Research, 16(3): 170-181 (in Chinese)

Gao Y, Zhang X, He G, Shchepin O, Yan SZ, Chen SL, 2019.

Influence of forest type on dark-spored myxomycete community in subtropical forest soil, China

Soil Biology and Biochemistry, 138: 107606

DOI:10.1016/j.soilbio.2019.107606      URL     [本文引用: 1]

Hernández-Crespo JC, Lado C, 2005- 2022.

An on line nomenclatural information system of Eumycetozoa

http://www.nomen.eumycetozoa.com

URL     [本文引用: 1]

Jiang C, 2013.

A comparative study of climate change and its environmental effects in the northern and southern regions of Qingling Mountains

Master Thesis, Northwest A&F University, Yangling. 1-155 (in Chinese)

Lado C, Estrada-Torres A, Rojas C, 2018.

New records of genera and species of Myxomycetes (Amoebozoa) from the Neotropics

Check List, 14(3): 509-518

DOI:10.15560/14.3.509      URL     [本文引用: 1]

Li J, Xiong HX, Dai YC, 2008.

Polypores from Shennongjia Nature Reserve in Hubei Province, Central China

Cryptogamie Mycologie, 29: 267-277

[本文引用: 1]

Li JH, Zhou YQ, Yue ZG, Wang J, Song JY, Lei LF, 2022.

Water vapor and cloud base heigh difference between the north and south of Qinling Mountains based on microwave radiometer measurements

Meteorological Monthly, 4: 452-458 (in Chinese)

Li M, Chen SL, 2021.

Research progress on species diversity of myxomycetes and its relationship with influencing factors

Mycosystema, 40(2): 270-281 (in Chinese)

Li M, Gao Y, Zhang X, Wang R, Chen SL, Yan SZ, 2021.

Specific composition and ecological characteristics of myxomycetes in Xingshan County, Hubei Province

Mycosystema, 40(2): 358-371 (in Chinese)

Li M, Tao X, Li B, Du Q, Zhu XC, Huang DC, Yan SZ, Chen SL, 2021.

Spatiotemporal distribution and dynamic changes of myxomycetes insubtropical forests of China

Fungal Ecology, 53: 101078

DOI:10.1016/j.funeco.2021.101078      URL     [本文引用: 1]

Li S, 2012.

Gene expression in ontogenetic stages phylogenetic relationships of representative species of myxomycetes

Master Thesis, Jilin Agricultural University, Changchun. 1-53 (in Chinese)

Li Y, Li HZ, 1989.

Myxomycetes from China I: a checklist of Myxomycetes from China

Mycotaxon, 35(2): 429-436

[本文引用: 2]

Li Y, Li HZ, Wang Q, Chen SL, 2008a.

Flora fungorum sinicorum Myxomycetes I

Science Press, Beijing. 1-238 (in Chinese)

Li Y, Li HZ, Wang Q, Chen SL, 2008b.

Flora fungorum sinicorum Myxomycetes Ⅱ

Science Press, Beijing. 1-204 (in Chinese)

Li Y, Liu P, Zhao MJ, 2018.

Species catalogue of China. Vol. 3. Fungi. Myxomycetes, Oomycetes

Science Press, Beijing. 1-92 (in Chinese)

Liao J, Wang XG, 2000.

Review of forest litter study

Jiangxi Forestry Science and Technology, 1: 31-34 (in Chinese)

Liu FJ, Pan JZ, Zhu H, Wang Q, Li Y, 2010.

Species of Myxomycetes from Qinling Region by moist chamber culture

Journal of Fungal Research, 8(2): 71-74, 84 (in Chinese)

Liu QS, Yan SZ, Chen SL, 2015.

Species diversity of myxomycetes associated with different terrestrial ecosystems, substrata (microhabitats) and environmental factors

Mycological Progress, 14: 1-13

DOI:10.1007/s11557-015-1022-6      URL     [本文引用: 1]

Liu QS, Yan SZ, Dai JY, Chen SL, 2013.

Species diversity of corticolous myxomycetes in Tianmu Mountain National Nature Reserve, China

Canadian Journal of Microbiology, 59(12): 803-813

DOI:10.1139/cjm-2013-0360      URL     [本文引用: 2]

Loranger G, Ponge JF, Imbert D, Lavelle P, 2002.

Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality

Biology and Fertility of Soils, 35: 247-252

DOI:10.1007/s00374-002-0467-3      URL     [本文引用: 1]

Lorenz K, Preston CM, Raspe S, Morrisonc LK, Feger KH, 2000.

Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR

Soil Biology and Biochemistry, 32(6): 779-792

DOI:10.1016/S0038-0717(99)00201-1      URL     [本文引用: 1]

Louzada JNC, Schoereder JH, Marco JPD, 1997.

Litter decomposition in semideciduous forest and Eucalyptus spp. crop in Brazil: a comparison

Forest Ecology and Management, 94(1-3): 31-36

DOI:10.1016/S0378-1127(96)03986-2      URL     [本文引用: 1]

Magurran AE, 1988.

Ecological diversity and its measurement

Princeton University Press, Princeton. 1-179.

[本文引用: 1]

Masaki U, Mo WH, Takayuki N, Tsuchiya Y, Horikoshi T, Koizumi H, 2005.

Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest

Agricultural and Forest Meteorology, 134(1-4): 102-109

DOI:10.1016/j.agrformet.2005.11.003      URL     [本文引用: 1]

Michel P, Marianne M, Jean B, 2011.

Les Myxomycètes

Sarl Editions FMDS, London. 1-1119

[本文引用: 1]

Moreno G, Illana C, Heykoop M, 1992.

Spanish Myxomycetes VI. Four interesting species belonging to Stemonitales

Cryptogamie Mycologie, 13: 295-303

[本文引用: 1]

Nannenga-Bremekamp NE, Mukerji KG, Pasricha R, 1984.

Notes on Indian Myxomycetes. Three new species, and commnets on others

Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen-Series C, 87(4): 471-482

[本文引用: 1]

Nannenga-Bremekamp NE, Yamamoto Y, 1990.

Additions to the Myxomycetes of Japan IV

Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 93(3): 265-280

[本文引用: 1]

Nguyen LT, Oriana SM, King JAR, John CRS, Nikki HA, 2020.

Occurrence of leaf litter inhabiting myxomycetes from lowland forest patches of Northern and Central Vietnam

Tropical Ecology, 60: 495-506

DOI:10.1007/s42965-020-00059-9      URL     [本文引用: 1]

Novozhilov YK, Schnittler M, Erastova DA, Shchepin ON, 2017.

Myxomycetes of the Sikhote-Alin State Nature Biosphere Reserve (Far East, Russia)

Nova Hedwigia, 104(2): 183-209

DOI:10.1127/nova_hedwigia/2016/0394      URL     [本文引用: 1]

Pielou EC, 1975.

Ecological diversity

John Wiley & Sons, New York. 1-165

[本文引用: 1]

Schnittler M, Unterseher M, Tesmer J, 2006.

Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest

Mycologia, 98(2): 223-232

PMID:16894967      [本文引用: 1]

The ecological community of myxomycetes and myxomycete-like organisms (MMLO) in the canopy of living deciduous trees was studied in a riparian deciduous forest at Leipzig, Germany. A systematic survey carried out with a total of 146 moist chamber cultures resulted in 386 records of 37 taxa, with 32 myxomycetes, two myxobacteria, two protostelids and the fruit body forming ciliate Sorogena stoianovitchae, the latter recorded for the first time for Europe. With 94% of all cultures positive for MMLO, these organisms are present consistently in the investigated sections of white-rotten twigs attached to living trees at 10-30 m above the ground. Our sampling recovered a majority of the likely species, with 37 out of the 42-45 predicted according to a species-accumulation curve and two other estimators of species richness. Nonmetric multidimensional scaling revealed pH, water-holding capacity and stage of decay to explain most of the variation in species distribution. Arcyria cinerea and Perichaena depressa as the most common species occurred in 32% and 29% of all samples, respectively. Viewing the sampled twigs as habitat islands and a single spore as sufficient to establish a population, a simulation program assuming a random spore rain estimated an average of 0.4 and 0.35 spore hits per twig as necessary to explain the observed frequencies. This is matched by the potential productivity of the substrate. All fruit bodies from the cultured twigs would be able to create a spore rain of 86 (A. cinerea) or 40 (P. depressa) spore hits per twig when dispersed evenly over the plot. The terminal fall velocity of spores was measured, revealing that it took about 5 h for a spore to land (30 m) in still air and indicating high dispersal ability for canopy-inhabiting MMLO.

Song Y, Xie XC, Deng BW, 2022.

Taxonomic satus of Russula in Qinling Mountains and suggestions for strategies

Edible Fungi of China, 41(2): 6-9 (in Chinese)

Stephenson SL, 2011.

From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph

Fungal Diversity, 50(1): 21-34

DOI:10.1007/s13225-011-0113-1      URL     [本文引用: 1]

Stephenson SL, Kalyanasundaram I, Lakhanpal T, 1993.

A comparative biogeographical study of Myxomycetes in the mid-Appalachians of eastern North America and two regions of India

Journal of Biogeography, 20: 645-657

DOI:10.2307/2845520      URL     [本文引用: 1]

Stephenson SL, Rojas C, 2022. Myxomycetes: biology, systematics, biogeography and ecology. 2nd ed. Academic Press, Amsterdam. 1-565

[本文引用: 1]

Stephenson SL, Schnittler M, Lado C, 2004.

Ecological characterization of a tropical myxomycete assemblage-- Maquipucuna Cloud Forest Reserve, Ecuador

Mycologia, 96(3): 488-497

PMID:21148872      [本文引用: 1]

The assemblage of myxomycetes (plasmodial slime molds) associated with cloud forests of the Maquipucuna Cloud Forest Reserve in the western Andes was investigated. Within three study sites located along a gradient extending from 1200 to 2700 m above sea level, a clear pattern of decreasing myxomycete diversity and productivity with elevation was apparent. As such, these data conform to the pattern of "reverse diversity" for myxomycetes in the neotropics, with higher diversity for less mesic forest types than for more mesic forest types. Canonical correspondence analysis of myxomycete abundances in relation to microhabitat parameters revealed three major ecological assemblages: wood-, litter- and inflorescence-inhabiting species. All three assemblages include a number of specialized species, with the assemblage associated with litter being the most diverse and the one associated with inflorescences being the most distinctive. In addition, samples from the microhabitat represented by the cover of epiphyllic liverworts on living leaves regularly produce myxomycetes in moist chamber culture but with few sporocarps and no evidence of any specialized species. At least near ground level, bark-inhabiting (corticolous) myxomycetes are uncommon in the cloud forests sampled in the present study.

Stout JD, 1980.

The role of Protozoa in nutrient cycling and energy flow. Advances in Microbial Ecology. Vol.4

Plenum Press, New York. 1-50

[本文引用: 1]

Takahashi K, 2013.

Myxomycete distribution varies among leaf litters of different vegetation in a local secondary forest of warm-temperate western Japan

Mycoscience, 54(5): 368-377

DOI:10.1016/j.myc.2013.01.001      URL     [本文引用: 1]

Takahashi K, Hada Y, 2010.

Geographical distribution of Myxomycetes on coniferous deadwood in relation to air temperature in Japan

Mycoscience, 51(4): 281-290

DOI:10.1007/S10267-010-0044-9      URL     [本文引用: 1]

Wang GW, Yan SZ, Xu MQ, Dai Q, Yao HQ, Liu QS, Chen SL, 2017.

The myxomycete species in Jiangsu, Zhejiang and Anhui of Eastern China

Mycosystema, 36(4): 454-465 (in Chinese)

Wu YD, Mao WL, Yuan Y, 2021.

Comparison of polypore florae and diversity from temperate tosubtropical forest zones in China

Biodiversity Science, 29: 1369-1376 (in Chinese)

DOI:10.17520/biods.2021094      URL    

Yamamoto Y, 1998.

The myxomycete biota of Japan

Toyo Shorin, Tokyo. 1-700 (in Japanese)

[本文引用: 1]

Yue M, 2015.

The plant altitudinal spectrum of Qinling Mountains is complete and complex

Forest & Humankind, 2: 76-81 (in Chinese)

Zhang B, Li Y, 2015.

Dictydiaethalium dictyosporangium sp. nov. from China

Mycotaxon, 129(2): 455-458

DOI:10.5248/129.455      URL     [本文引用: 1]

Zhang B, Li Y, 2016.

A new species and two new records of Stemonitidaceae from China

Phytotaxa, 267(2): 151-156

DOI:10.11646/phytotaxa.267.2.8      URL     [本文引用: 1]

Zhang B, Li Y, 2017.

A new Stemonitis species and a new record of Elaeomyxa from China

Phytotaxa, 323(1): 83-87

DOI:10.11646/phytotaxa.323.1.7      URL     [本文引用: 1]

Zhao FY, Li Y, Liu SY, 2021.

Species diversity of myxomycetes in Pinus koraiensis forest and coniferous and broad-leaf mixed forest

Mycosystema, 40(2): 348-356 (in Chinese)

Zhou ZH, Li Y, 1983.

New myxomycete-Cribraria enodis

Acta Mycologica Sinica, 2(1): 41-43 (in Chinese)

Zhu H, 2012.

Studies on ontogeny and chemical constituents of myxomycetes from representative regions in northern China

PhD Dissertation, Jilin Agricultural University, Changchun. 1-97 (in Chinese)

白燕, 2020.

秦岭-大巴山地区NDVI时空变化趋势数据集 (2000-2019)

全球变化数据学报, 4: 346-353

[本文引用: 1]

陈萍, 徐美琴, 陈双林, 2006.

甘肃黏菌考录

甘肃科学学报, 18(3): 35-38

[本文引用: 1]

陈小姝, 谷硕, 宋晓霞, 李姝, 王琦, 李玉, 2012.

长春地区黏菌区系特征

菌物学报, 5: 799-807

[本文引用: 1]

戴群, 陈双林, 李玉, 2011.

秦岭牛背梁自然保护区的黏菌资源

中国菌物学会第五届会员代表大会暨2011年学术年会论文摘要集,广州. 32

[本文引用: 1]

戴玉成, 杨祝良, 崔宝凯, 吴刚, 袁海生, 周丽伟, 何双辉, 葛再伟, 吴芳, 魏玉莲, 员瑗, 司静, 2021.

中国森林大型真菌重要类群多样性和系统学研究

菌物学报, 40(4): 770-805

[本文引用: 1]

高扬, 陈双林, 2021.

黏菌分布格局与生态学研究进展

菌物学报, 40(10): 2537-2549

[本文引用: 1]

高扬, 闫淑珍, 王高伟, 何刚, 陈双林, 2018.

河南宝天曼自然保护区黏菌初报

菌物研究, 16(3): 170-181

[本文引用: 2]

蒋冲, 2013.

秦岭南北气候变化及其环境效应比较研究

西北农林科技大学硕士论文, 杨凌. 1-155

[本文引用: 1]

李金辉, 周毓荃, 岳治国, 王瑾, 宋嘉尧, 雷连发, 2022.

基于微波辐射计数据的秦岭南北水汽和云底高度等参量的差异

气象, 4: 452-458

[本文引用: 1]

李敏, 陈双林, 2021.

黏菌物种多样性及其与影响因子关系的研究进展

菌物学报, 40(2): 270-281

[本文引用: 4]

李敏, 高扬, 张鲜, 王睿, 陈双林, 闫淑珍, 2021.

湖北省兴山县黏菌的物种组成与生态特征

菌物学报, 40(2): 358-371

李姝, 2012.

黏菌代表种的个体发育相关基因表达及系统发育关系研究

吉林农业大学硕士论文, 长春. 1-53

[本文引用: 1]

李玉, 李惠中, 王琦, 陈双林, 2008a. 中国真菌志-黏菌卷Ⅰ. 北京: 科学出版社. 1-238

[本文引用: 2]

李玉, 李惠中, 王琦, 陈双林, 2008b. 中国真菌志-黏菌卷Ⅱ. 北京: 科学出版社. 1-204

[本文引用: 1]

李玉, 刘朴, 赵明君, 2018. 中国生物物种名录第三卷菌物(黏菌卵菌). 北京: 科学出版社. 1-92

[本文引用: 1]

廖军, 王新根, 2000.

森林凋落量研究概述

江西林业科技, 1: 31-34

[本文引用: 1]

刘福杰, 潘景芝, 朱鹤, 王琦, 李玉, 2010.

湿室培养获得秦岭地区黏菌种类

菌物研究, 8(2): 71-74, 84

[本文引用: 2]

宋玉, 解修超, 邓百万, 2022.

秦岭地区红菇属菌类分类现状、问题及对策

中国食用菌, 41(2): 6-9

[本文引用: 1]

王高伟, 闫淑珍, 徐美琴, 戴群, 姚慧琴, 刘歧莎, 陈双林, 2017.

华东苏、浙、皖三省的黏菌物种

菌物学报, 36(4): 454-465

[本文引用: 1]

武英达, 茆卫琳, 员瑗, 2021.

我国温带至亚热带多孔菌区系和多样性比较

生物多样性, 29: 1369-1376

DOI:10.17520/biods.2021094      [本文引用: 1]

多孔菌是木材腐朽菌的重要类群, 具有重要的生态功能和经济价值。本文比较分析了我国寒温带至亚热带的阿尔泰山脉、秦岭山脉和南岭山脉的多孔菌物种、生态习性和区系特征。经调查, 在三个山脉共发现多孔菌8目29科107属287种, 其中阿尔泰山、秦岭和南岭分别为84种、132种、160种, 优势科均为多孔菌科和锈革孔菌科。三个山脉的共有属和共有种分别为25个和14个。区系地理分析发现, 阿尔泰山脉和秦岭山脉以世界广布成分和北温带成分为主, 南岭山脉以世界广布和泛热带成分为主。在寄主选择性方面, 阿尔泰山脉的多孔菌偏好生长在裸子植物上, 其比例高于被子植物, 而秦岭和南岭则相反。在腐朽类型方面, 从寒温带至亚热带白腐真菌物种数量呈现逐渐上升的趋势, 而褐腐真菌数量逐渐下降。通过比较分析3个不同气候带的多孔菌物种多样性、寄主偏好性和引起的腐朽类型, 发现气候和植被类型是影响多孔菌区系组成的主要因素。

岳明, 2015.

秦岭植物垂直带谱完整复杂

森林与人类, 2: 76-81

[本文引用: 1]

中国科学院神农架真菌地衣考察队, 1989. 神农架真菌与地衣. 北京: 世界图书出版公司. 1-514

[本文引用: 2]

赵凤云, 李玉, 刘淑艳, 2021.

红松林和针阔叶混交林下黏菌物种多样性研究

菌物学报, 40(2): 348-356

[本文引用: 1]

周宗璜, 李玉, 1983.

黏菌一新种——无节筛菌

真菌学报, 2(1): 41-43

[本文引用: 2]

朱鹤, 2012.

中国北方代表地区黏菌主要类群的个体发育及化学成分研究

吉林农业大学博士论文, 长春. 1-97

[本文引用: 1]

/