中文  |  English

菌物学报, 2023, 42(10): 2111-2118 doi: 10.13346/j.mycosystema.230050

研究论文

香菇单核菌丝生长速度差异的相关基因分析

黄万兵1,2, 侯娣1,3, 周陈力1, 李燕1, 杨瑞恒,1,*, 鲍大鹏,1,*

1 上海市农业科学院食用菌研究所 农业农村部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 上海市农业遗传育种重点开放实验室,上海 201403

2 贵州省农业科学院贵州省农作物品种资源研究所 贵州省食用菌育种重点实验室,贵州 贵阳 550006

3 上海海洋大学食品学院,上海 201306

Analyses of genes related to different mycelial growth rate of Lentinula edodes monokaryons

HUANG Wanbing1,2, HOU Di1,3, ZHOU Chenli1, LI Yan1, YANG Ruiheng,1,*, BAO Dapeng,1,*

1 Key Laboratory of Edible Fungal Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

2 Guizhou Key Laboratory of Breeding of Edible Fungi, Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China

3 College of Food Sciences, Shanghai Ocean University, Shanghai 201306, China

收稿日期: 2023-03-1   接受日期: 2023-03-27  

基金资助: 国家自然科学基金(31800015)
贵州省食用菌育种重点实验室开放课题黔科合平台人才[2019]5105-2002号
黔科合支撑[2022]重点025

Corresponding authors: *E-mail: YANG Ruiheng, yangruiheng@126.com; BAO Dapeng, 1610301025@qq.com

Received: 2023-03-1   Accepted: 2023-03-27  

Fund supported: National Natural Science Foundation of China(31800015)
Open Project of Key Laboratory of Edible Fungi Breeding of Guizhou([2019]5105-2002)
Guizhou Province Science and Technology Support Project(2022-025)

摘要

以双核香菇Lentinula edodes菌株中分离获得2个亲和的单核体Y0040-1和Y0040-3为材料,在不同的培养基上进行培养,进行差异性状评价和表达差异性分析。结果表明在不同的培养基(PDA和2%木屑PDA)上2个单核体菌丝生长速度都存在差异,其中Y0040-1的生长速度显著高于Y0040-3。进一步分析转录组数据发现,在不同培养基上2个单核体比较组(Y0040-3 vs. Y0040-1)有1 633个共同的差异基因,这些共同变化的基因可能是导致两者性状差异的主要原因,这些基因中共同上调的有155个,共同下调的有136个。对这些基因进行注释分析,发现共同上调的基因参与代谢过程中的氨基酸代谢和碳水化合物代谢等,分析木质纤维素酶发现,Y0040-1上调基因数量高于Y0040-3,且Y0040-1中的纤维素降解酶和木质素降解酶表达量都明显高于Y0040-3。

关键词: 香菇; 单核体; 异核体; Cazymes家族; 木质纤维素酶

Abstract

Two compatible monokaryons (Y0040-1 and Y0040-3) isolated from dikaryotic Lentinula edodes were used for evaluating growth rate and gene expression differences. The results showed that the mycelial growth rate of the two monokaryons was different on different mediums (PDA and PDA+2% sawdust), and the growth rate of Y0040-1 was higher than that of Y0040-3. Further analysis of transcriptome indicated that a total of 1 633 genes detected had common differentially expressed genes, which might be the shared expression pathways leading to the difference between the two monokaryons. Among these genes, 155 genes were up-regulated and 136 down-regulated. Annotation and analysis of these genes showed that the co-up-regulated genes were involved in metabolic activities, of which amino acid metabolism and carbohydrate metabolism were the most enriched. Lignocellulase analysis showed that the number of up-regulated genes in Y0040-1 was higher than that in Y0040-3, and the expression levels of cellulose and lignin degrading enzymes in Y0040-1 strain were higher than those in Y0040-3.

Keywords: Lentinula edodes; monokaryotic strains; heterokaryons; Cazymes family; lignocellulose enzymes

PDF (527KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄万兵, 侯娣, 周陈力, 李燕, 杨瑞恒, 鲍大鹏. 香菇单核菌丝生长速度差异的相关基因分析[J]. 菌物学报, 2023, 42(10): 2111-2118 doi:10.13346/j.mycosystema.230050

HUANG Wanbing, HOU Di, ZHOU Chenli, LI Yan, YANG Ruiheng, BAO Dapeng. Analyses of genes related to different mycelial growth rate of Lentinula edodes monokaryons[J]. Mycosystema, 2023, 42(10): 2111-2118 doi:10.13346/j.mycosystema.230050

原生质体分离技术是食用菌育种和基础研究中经常用到的方法,可以将食用菌中的2个异核体分开而获得单核体。但是在原生质体单核化中,经常发现2个单核菌丝的生长出现差异,这种生长性状差异在多种食用菌中都有存在(程水明 2005;蚁瑞荣等 2008;潘越等 2014;叶丽云等 2016;马丽娟等 2022;侯娣等 2023),在香菇中这种差异性比较明显(侯娣等 2023;姜珊等 2023)。

香菇Lentinula edodes (Berk.) Pegler是我国食用菌产业中最重要的栽培品种之一,其年产量居于全国第一,基于原生质体单核化进行杂交育种,获得新的性状,产生新的品种,已经成为香菇种质资源创新的重要路径(何志勇等 2000;宋莹等 2016, 2017),同时香菇单核体是一种杂交配子可回溯材料,可以应用于分子标记开发和品种保护等方面(李安政 2006;徐年生等 2012;鲍大鹏 2019)。在试验中同样发现了香菇单核体分离过程中的生长差异和偏分离现象(程水明 2005;程爽爽等 2019;侯娣等 2023;姜珊等 2023),并将此现象定义为强势核和弱势核(姜珊等 2023),但是产生这种生长差异现象的原因至今还没有阐述清楚。研究产生这种差异的分子机制是了解香菇双核体生理学特征、遗传学机制和调控机制的重要的应用性基础研究,可为解决食用真菌菌种培育、种性稳定等方面问题提供理论指导。

在双孢蘑菇Agaricus bisporus (J.E. Lange) Imbach.中异核体差异性表达形成了细胞核特异性调控机制,从而产生了不同的生长状态,但是香菇这种异核体的遗传背景还不清楚,需要进一步研究。随着转录组技术的发展,其已经广泛应用在香菇的科学研究中,解析了香菇在不同环境条件下、不同发育阶段以及不同培养基质中的表达谱差异的遗传学背景(Song et al. 2018;Seung-Il et al. 2019;Yeon et al. 2021),转录组已经成为探索其遗传学背景的重要手段,也是了解其基础遗传学背景的重要途径。

1 材料与方法

1.1 供试菌株来源

本研究采用双核菌株Y0040,保存于上海市农业科学院食用菌研究所。原生质单核体分离方法参考已有报道(宋莹等 2017;侯娣等 2023),获得对应的单核体Y0040-1和Y0040-3。

1.2 培养基制备

本研究使用2种培养基:PDA和添加了2%木屑的PDA,培养基配置方法和木屑处理方法参照侯娣等(2023)的报道。

1.3 香菇菌丝培养方法及数据测量

超净工作台紫外线灭菌30 min后,在香菇单核体菌丝边缘打孔,使用接种针分别接种于PDA培养基和添加2.0%木屑PDA培养基的中间。每个处理设置3个平行样,在25 ℃恒温培养箱避光培养。本研究采取十字交叉法测量菌丝的生长(聂建军等 2020),即平板接种后先对平板进行十字划线,待菌丝萌发,在其生长尖端标记最长半径r1,待双核和单核体菌丝生长3 d、6 d时,在菌丝最外围做标记r2,然后用游标卡尺测量r1与r2之间的距离(mm),再除以菌丝培养天数(d)即得菌丝平均生长速度。所获得的实验数据使用SPSS Statistics 26统计分析软件进行显著性分析(P<0.05)。

1.4 转录组测序样品准备、测序以及数据分析

Y0040-1和Y0040-3这一对异核体在2种培养基上培养9 d开始收集菌丝,每个试验设计设置3个重复,组名分别为CK1、WP1、CK3和WP3。从样品中提取total RNA,利用Nanodrop2000对所提RNA的浓度和纯度进行检测,琼脂糖凝胶电泳检测RNA完整性,RNA 片段长度采用 Agilent 2100检测,样品合格后,文库构建以及高通量测序在上海美吉生物医药科技有限公司完成。原始数据质控以及mapping信息请参照侯娣等(2023)的报道。使用RSEM软件(http://deweylab.biostat.wisc.edu/rsem/)对样品的基因表达水平进行定量分析,获得每个样本基因的Read Counts。然后对其进行TPM (Transcripts Per Million reads),进而得到标准化的基因表达水平,利用DESeq2软件(Simon & Wolfgang 2010)比较组间的差异表达基因(differentially expressed gene, DEG),使用参数为P-adjust<0.05 & |log2FC|≥1。对获得的差异性基因进行基于GO和KEGG注释,CAZymse家族以及木质纤维素酶注释参考相关报道(Floudas et al. 2012;Morin et al. 2012;杨瑞恒等 2018;侯娣等 2023)。

2 结果与分析

2.1 生长速度的比较分析

本研究发现从同一出发菌株制备的一对亲和单核体菌丝的生长速度差异明显,其中一个单核体Y0040-1在PDA和木屑-PDA培养基上菌丝增长率明显高于另一单核体Y0040-3,而双核菌丝的生长速度高于单核菌丝(图1)。

图1

图1   双核体、单核体在PDA培养基与2%木屑粉PDA培养基上菌丝生长对比图

不同小写字母表示P<0.05 水平有显著差异

Fig. 1   Comparison of mycelial growth between monokaryon strains Y0040-1 and Y0040-3 on PDA and PDA + 2% sawdust.

Different lowercase letters represent significant level at P<0.05.


2.2 单核转录组测序分析

2.2.1 转录组差异表达基因分析

将2个差异核体进行转录组测序和分析,根据DEG的筛选标准|log2FC|>1且qvalue<0.005,2个数据组CK3 vs. CK1、WP3 vs. WP1中共鉴定出5 659个差异基因,分组比较进行韦恩图(Venn)分析发现,CK3 vs. CK1、WP3 vs. WP1差异基因数量分别为2 510个和4 782个,WP3 vs. WP1显著性差异表达的基因数目最多。在这两组中分别有877个、3 149个特有差异表达基因,WP3 vs. WP1组特有差异表达基因数量最高(图2)。

图2

图2   差异表达基因Venn分析

Fig. 2   Venn diagram of different gene expressions.


2.2.2 单核体差异表达

通过Venn分析发现1 633个基因发生了共同的变化,这些共同变化的基因可能是导致两者性状差异的共同表达通路,这些基因中共同上调的基因有155个,共同下调的基因有136个。进一步对这些基因进行KEGG注释分析,发现共同上调基因在氨基酸代谢、能量代谢和碳水化合物代谢等过程中得到富集;而下调的基因主要参与氨基酸代谢、碳水化合物代谢、脂类代谢等过程,可见两者在氨基酸代谢和碳水化合物代谢都得到了富集(图3),而碳水化合物代谢与Cazymes家族基因密切相关。

图3

图3   在比较组CK3 vs. CK1和WP3 vs. WP1共同调节基因的KEGG富集

A:上调基因. B:下调基因

Fig. 3   KEGG enrichment of co-regulated genes in CK3 vs. CK1 and WP3 vs. WP1.

A: Co-upregulated genes. B: Co-downregulated genes.


2.3 在不同的细胞核中Cazymes家族基因表达

通过分析Cazymes家族差异基因,在比较组CK3 vs. CK1、WP3 vs. WP1差异表达的基因分别为116和49个(表1),且上调表达基因的数量占优。

表1   在两组比较组中Cazymes家族上调下调情况

Table 1  The numbers of downregulated and upregulated genes in different samples

CK3 vs. CK1WP3 vs. WP1
UpDownUpDown
Auxiliary activities (AAs)53170
Carbohydrate esterases (CEs)53120
Glycoside hydrolases (GHs)1515577
Glycosyl transferases (GTs)11127
Polysaccharide lyases (PLs)1040
Total272210214

新窗口打开| 下载CSV


进一步分析纤维素酶和木质素酶基因的表达,发现在WP3 vs. WP1和CK3 vs. CK1组中,只有多铜氧化酶、锰过氧化物酶、β-葡萄糖苷酶和内切β-1,4-葡聚糖酶表达有差异(表2),1,4-β-纤维素酶、木质素过氧化物酶和通用过氧物酶表达无差异。异核体WP1和WP3的多铜氧化酶表达有6个基因表达有差异,在WP1中Le3001008和Le2000049表达最高,远远高于WP3,而WP3中Le3000250表达最高达到了935.57,是WP1的5倍。锰过氧化物酶都表现为WP1高于WP3;β-葡聚糖苷酶有5个基因表达有差异,WP1有2个高表达,3个低表达,特别是Le2000265,是WP3的30倍以上;内切β-1,4-葡聚糖酶有3个表达差异,WP3有2个高表达,WP1有1个高表达,且Le5000298在WP3中表达最高。进一步比较CK1 vs. CK3,多铜氧化酶有3个基因表达有差异,且全部为CK1全部上调,表达最高的为Le3000250;锰过氧化物酶表达差异基因有3个,全部表现为CK1高于CK3;β-葡聚糖苷酶有2个基因表达差异,且都为CK1上调;CK1的3个内切β-1,4-葡聚糖酶基因表达高于CK3 (表2)。

表2   不同异核体中木质纤维素降解酶基因表达情况

Table 2  The gene expression profiles of lignocellulose degrading genes in the two monokaryons

GenesGene_idWP3WP1CK1CK3WP3 vs. WP1CK3 vs. CK1
多铜氧化酶
Multicopper
oxidase
Le30010080.22±0.15311.05±253.8891.19±36.190.12±0.14Yes|UpYes|Up
Le10018520.38±0.0739.58±25.900.14±0.170.03±0.05Yes|Up
Le500103613.09±1.311.32±0.693.20±0.542.06±0.82Yes|Down
Le200080619.03±1.898.36±3.6711.86±2.213.38±0.62Yes|Up
Le200004919.92±1.13655.97±417.4155.54±35.1139.13±1.48Yes|Up
Le600062451.09±8.52117.65±30.4959.50±7.9320.27±5.39Yes|UpYes|Up
Le3000250935.57±34.93188.46±47.04123.00±57.9651.82±12.71Yes|Down
锰过氧化物酶
Manganese
peroxidase
Le300012514.38±0.7352.82±47.4411.48±0.884.08±0.16Yes|UpYes|Up
Le20008523.13±0.6918.30±5.867.77±5.270.76±0.19Yes|UpYes|Up
Le20008719.14±1.34320.34±340.3730.02±20.242.87±0.32Yes|UpYes|Up
β-葡萄糖苷酶
β-glucosidase
Le200026533.71±6.411011.49±124.79281.73±32.0172.59±9.01Yes|UpYes|Up
Le200110210.07±2.0139.79±1.5545.15±4.806.11±0.44Yes|UpYes|Up
Le1000033311.10±0.890.16±0.202.56±0.452.45±0.48Yes|Down
Le700007011.67±0.930.51±0.222.29±0.512.27±0.12Yes|Down
Le500065225.59±0.462.26±1.4510.53±1.798.03±1.18Yes|Down
内切β-1,4-葡聚
糖酶
Endo-beta-
1,4-glucanase
Le5000298113.29±7.8133.51±5.4226.13±2.6444.80±6.92Yes|Down
Le40000953.47±0.694.82±4.2225.71±5.544.99±1.42Yes|Up
Le800031037.00±2.482.34±1.509.48±2.535.88±1.59Yes|Down
Le60003895.34±1.8611.79±6.1637.61±9.776.95±1.43Yes|UpYes|Up
Le40008455.57±0.841.94±0.4816.77±2.931.32±0.37Yes|Up

新窗口打开| 下载CSV


3 讨论

通过试验比较发现,异核体之间的生长速度存在差异,而这种生长差异性在其他的食药用菌中也有发现,例如金针菇、斑玉蕈、灵芝和茯苓等(蚁瑞荣等 2008;潘越等 2014;叶丽云等 2016;马丽娟等 2022)。其中从茯苓异核体菌株776单核化分离获得不同核型的原生质体之间的生长速度存在明显差异(李寿建和董彩虹 2023)。说明在不同核型菌株之间出现的生长差异在不同种类的食药用菌中都存在,但是不是一种普遍现象还需要进一步验证。

研究发现香菇单菌丝的生长速度与交配型具有相关性,不同交配型的生长速度以及菌落形态有较大的差异(程水明 2005;林范学等 2013;程爽爽等 2019),这些差异的产生可能与其遗传背景相关,通过分析发现香菇双核菌株的异核体的基因组存在着遗传背景差异大的问题,包括大段的染色体重排、同源染色体间的长度差异较大、Cazymes数量和基因功能以及代谢通路上都存在差异。通过本研究中异核体转录组的分析发现,2个异核菌株的表达谱同样存在差异,从细胞代谢到细胞结构等途径都存在差异,其中碳水化合物和氨基酸代谢等都得到了富集,特别是Y0040-1比Y0040-3菌株的Cazymes家族,包括纤维素酶和木质素酶上调基因占优,这说明Y0040-1可能潜在的木质纤维素降解能力较强。在双孢蘑菇中发现其中一个核的代谢相关基因和Cazymes家族的基因表达占优势,是导致异核体生长不同的原因(Thies et al. 2018),基于此可能也是Y0040-1比Y0040-3生长速度快的原因。

参考文献

Bao DP, 2019.

Research progress on the mating-typing locus structures of basidiomycete mushrooms

Mycosystema, 38(12): 2061-2077 (in Chinese)

Cheng SM, 2005.

Study on the phenomenon and genetic basis of segregation distribution of mating-type factors in Lentinus edodes

PhD Dissertation, Huazhong Agricultural University, Wuhan. 1-131 (in Chinese)

Cheng SS, Zhang J, Du ST, 2019.

Analysis of mycelial growth characteristics of Lentinus edodes monokaryons strains

Edible Fungi of China, 38(7): 32-37, 42 (in Chinese)

Floudas D, Binder M, Riley, Barry K, Riley R, Al E, Blanchette RA, 2012.

The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes

Science, 336 (6089): 1715-1719

DOI:10.1126/science.1221748      PMID:22745431      [本文引用: 1]

Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

He ZY, Wang P, Xu JL, Zhang WJ, 2000.

Optimization of culture conditions for Lentinus sp.protoplast fusant

Acta Edulis Fungi, 7(1): 8-10 (in Chinese)

Hou D, Zhou CL, Li Y, Yang RH, Bao DP, 2023.

The gene expression profiles of promoting mycelial growth of monokaryotic strains of Lentinula edodes cultured on PDA with additional sawdust

Mycosystema, 42(2): 507-519 (in Chinese)

Jiang S, Ming PH, Yang RH, Wang Y, Hou D, Yu M, Bao DP, 2023.

A study on relative dominance of the nuclei during protoplast monokaryotization of Lentinula edodes

Mycosystema, 42(1): 187-195 (in Chinese)

Li AZ, 2006.

Identification of secondary recombinants and linked molecular markers for mating-type factors in Lentinula edodes

PhD Dissertation, Huazhong Agricultural University, Wuhan. 1-122 (in Chinese)

Li SJ, Dong CH, 2023.

Protoplast monokaryogenesis and cross of the homokaryotic strains of Wolfiporia hoelen

Mycosystema, https://kns.cnki.net/kcms/detail/11.5180.Q.20221116.0921.004.html (in Chinese)

URL    

Lin FX, Li HS, Feng L, Liang BD, Bao DP, 2013.

The relationships between mating types and mycelial growth rates of monokaryons and dikaryons in Lentinula edodes

Acta Agriculturae Shanghai, 29(5): 15-22 (in Chinese)

Ma LJ, Li XL, Bao DP, Shang JJ, Zhou CL, Yang RH, 2022.

Genetic structure and polymorphism of mating-type loci in different Hypsizygus marmoreus strains

Acta Edulis Fungi, 29(2): 23-30 (in Chinese)

Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Al E, 2012.

Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

Proceedings of the National Academy of Sciences, 109(43): 17501-17506

[本文引用: 1]

Nie JJ, Pan BH, Li CP, Niu Y, Xu QF, Feng WJ, Meng QX, 2020.

Optimum of stock culture medium formula of Auricularia fuscosuccinea by orthogonal test

Edible and Medicinal Mushrooms, 28(5): 318-320, 327 (in Chinese)

Pan Y, Chen H, Feng ZY, Zhao J, 2014.

Variance analysis of different mating type strains in mononuclear protoplast of Hypsizygus marmoreus

Biotechnology Bulletin, 9: 131-135 (in Chinese)

Seung-Il Y, Yong LH, Kesavan M, Moon SY, Ahn YJ, Ji S, Ko J, Kim SJ, Ryu HJ, Hong CP, 2019.

Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes

BMC Genomics, 20(1): 1471-2164

[本文引用: 1]

Simon A, Wolfgang H, 2010.

Differential expression analysis for sequence count data

Genome Biology, 11(1): 1465-6906

[本文引用: 1]

Song HY, Kim DH, Kim JM, 2018.

Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes

Scientific Reports, 8(1): 8983

DOI:10.1038/s41598-018-27318-z      [本文引用: 1]

Lentinula edodes is a popular cultivated edible mushroom with high nutritional and medicinal value. To understand the regulation of gene expression in the dikaryotic mycelium and mature fruiting body in the commercially important Korean L. edodes strain, we first performed comparative transcriptomic analysis, using Illumina HiSeq platform. De novo assembly of these sequences revealed 11,675 representative transcripts in two different stages of L. edodes. A total of 9,092 unigenes were annotated and subjected to Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Gene expression analysis revealed that 2,080 genes were differentially expressed, with 1,503 and 577 upregulated in the mycelium and a mature fruiting body, respectively. Analysis of 18 KEGG categories indicated that fruiting body-specific transcripts were significantly enriched in ‘replication and repair’ and ‘transcription’ pathways, which are important for premeiotic replication, karyogamy, and meiosis during maturation. We also searched for fruiting body-specific proteins such as aspartic protease, gamma-glutamyl transpeptidase, and cyclohexanone monooxygenase, which are involved in fruiting body maturation and isolation of functional substances. These transcriptomes will be useful in elucidating the molecular mechanisms of mature fruiting body development and beneficial properties, and contribute to the characterization of novel genes in L. edodes.

Song Y, Liu JJ, Zhang M, Liu YY, Liu N, Li HL, 2017.

Innovation of Lentinus edodes germplasm by protoplast monokaryon hybridization technology

Northern Horticulture, 41(19): 165-169 (in Chinese)

Song Y, Yang Z, Liu JJ, Li HL, Liu YY, Zhang SY, Liu N, Zhang JJ, Zhang M, 2016.

Breeding of protoplast mononuclear hybrid strain “LNX” series of Lentinus edodes

2016 Academic Annual Meeting of Chinese Mycological Society, Fuzhou. 128 (in Chinese)

Thies G, Pelkmans JF, Ohm RA, Vos AM, Sonnenberg A, Baars JP, Wösten HA, Reinders MJ, Thomas A, 2018.

Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs

Proceedings of the National Academy of Sciences of the United States of America, 115(17): 27-8424

[本文引用: 1]

Xu NS, Luo XC, Ai DF, 2012.

Selection and breeding for new strains in Lentinula edodes

Journal of Fungal Research, 10(4): 255-262 (in Chinese)

Yang RH, Li Y, Wu YY, Tang LH, Shang JJ, Bao DP, 2018.

Comparative genomic analysis of lignocellulolytic enzymes in different Lentinula edodes strains

Acta Edulis Fungi, 25(3): 15-22 (in Chinese)

Ye LY, Lu X, Lin Q, Wu XP, 2016.

Study on the differences of monokaryotic mycelium and dikaryotic mycelium of Ganoderma lucidum

Science and Technology of Food Industry, 37(20): 211-215 (in Chinese)

Yeon KD, Jang MJ, Park YJ, Kim JY, 2021.

Transcriptome analysis identified candidate genes involved in fruit body development under blue light in Lentinula edodes

Applied Sciences, 11(15): 6997

DOI:10.3390/app11156997      URL     [本文引用: 1]

Lentinula edodes is an edible mushroom that is rich in polysaccharides, glucan, and lentinan. It is famous for its earthy, sweet, umami flavor, and is used in various foods all over the world. Although Lentinula edodes does not carry out photosynthesis with light, its fruit body development is regulated by light. In this study, we analyzed the morphological changes of L. edodes strain Sanjo701ho and identified the global gene expression patterns using EdgeR of fruit body development under blue light. The phenotype analysis under different light sources revealed that the pileus diameter grew, while the stipe length was suppressed under blue light. To understand the changes in the transcriptome under different light sources in L. edodes, gene set enrichment analysis (GSEA), KOG functional categories, and KEGG pathways were used and compared to the no-light condition. Lignocellulose, CAZyme, and transcription factor classified DEGs (differentially expressed genes) were identified to better understand the significant DEGs affected by light sources in the synthesis, metabolism, and recognition of complex carbohydrates. Six glycoside hydrolases (GHs), four auxiliary activities (AAs), three carbohydrate esterases (CEs), and glycosyltransferases (GTs) were identified as upregulated in the CAZyme DEGs. Furthermore, four β-glucosidase, one glucose oxidase, and one multicopper oxidase-related gene for lignocellulolytic genes were upregulated in the blue light condition, and AT_hook transcription factor, CBFD_NFYB_HMF transcription factor, HMG_box transcription factor, and fungal specific transcription factor were upregulated in the blue light condition. This study helps us understand fruit body development in mushroom-breeding programs.

Yi RR, Cao H, Pan YJ, 2008.

Isolation and comparison of different types of protoplast monokaryons from Flammulina velutipes

Acta Agriculturae Shanghai, 2008(3): 50-53 (in Chinese)

鲍大鹏, 2019.

担子菌类食用菌交配型位点结构的研究进展

菌物学报, 38(12): 2061-2077

[本文引用: 1]

程爽爽, 张姣, 杜双田, 2019.

香菇单核菌株菌丝生长特性分析

中国食用菌, 38(7): 32-37, 42

[本文引用: 2]

程水明, 2005.

香菇交配型偏分离现象及其遗传基础研究

华中农业大学博士论文, 武汉. 1-131

[本文引用: 3]

何志勇, 王镨, 徐晋麟, 张惟杰, 2000.

香菇原生质体融合菌株培养条件的优化

食用菌学报, 7(1): 8-10

[本文引用: 1]

侯娣, 周陈力, 李燕, 杨瑞恒, 鲍大鹏, 2023.

木屑马铃薯培养基促进香菇单核体菌丝体生长的表达谱分析

菌物学报, 42(2): 507-519

[本文引用: 7]

姜珊, 明鹏辉, 杨瑞恒, 汪滢, 侯娣, 余梅, 鲍大鹏, 2023.

香菇原生质体单核化过程中细胞核相对优势等级的研究

菌物学报, 42(1): 187-195

[本文引用: 3]

李安政, 2006.

香菇交配型因子次级重组体及与交配型因子连锁的分子标记的鉴定

华中农业大学博士论文, 武汉. 1-122

[本文引用: 1]

李寿建, 董彩虹, 2023.

茯苓原生质体单核化及同核体杂交

菌物学报, https://kns.cnki.net/kcms/detail/11.5180.Q.20221116.0921.004.html

URL     [本文引用: 1]

林范学, 李宏盛, 冯磊, 梁保东, 鲍大鹏, 2013.

交配型对香菇单、双核菌丝体菌丝生长速度的影响

上海农业学报, 29(5): 15-22

[本文引用: 1]

马丽娟, 李晓玲, 鲍大鹏, 尚俊军, 周陈力, 杨瑞恒, 2022.

斑玉蕈交配型位点结构及其多态性分析

食用菌学报, 29(2): 23-30

[本文引用: 2]

聂建军, 潘保华, 李彩萍, 牛宇, 徐全飞, 冯婉君, 蒙秋霞, 2020.

运用正交试验法优化褐黄木耳母种培养基的配方研究

食药用菌, 28(5): 318-320, 327

[本文引用: 1]

潘越, 陈辉, 冯志勇, 赵静, 2014.

斑玉蕈不同交配型的原生质体单核菌株差异分析

生物技术通报, 9: 131-135

[本文引用: 2]

宋莹, 刘俊杰, 张敏, 刘岩岩, 刘娜, 李宏亮, 2017.

采用原生质体单核体杂交技术创新香菇种质资源

北方园艺, 41(19): 165-169

[本文引用: 2]

宋莹, 杨镇, 刘俊杰, 李宏亮, 刘岩岩, 张士义, 刘娜, 张季军, 张敏, 2016.

香菇原生质体单核杂交菌株“LNX”系列的选育初报

中国菌物学会2016年学术年会, 福州. 128

[本文引用: 1]

徐年生, 罗信昌, 艾德甫, 2012.

香菇新菌株选育

菌物研究, 10(4): 255-262

[本文引用: 1]

杨瑞恒, 李焱, 吴莹莹, 唐利华, 尚俊军, 鲍大鹏, 2018.

基于基因组解析不同香菇菌株木质纤维素降解酶体系的差异

食用菌学报, 25(3): 15-22

[本文引用: 1]

叶丽云, 鲁欣, 林强, 吴小平, 2016.

灵芝单、双核菌丝差异研究

食品工业科技, 37(20): 211-215

[本文引用: 2]

蚁瑞荣, 曹晖, 潘迎捷, 2008.

金针菇不同类型单核原生质体的分离及其差异比较

上海农业学报, 2008(3): 50-53

[本文引用: 2]

/