中文  |  English

菌物学报, 2023, 42(3): 782-792 doi: 10.13346/j.mycosystema.220227

研究论文

木质纤维素降解真菌菌株筛选及对玉米秸秆的生物降解研究

安琪,1, 员瑗2, 戴玉成,,2,*, 韩美玲,,1,*

1 廊坊师范学院生命科学学院,河北 廊坊 065000

2 北京林业大学生态与自然保护学院,北京 100083

Screening of lignocellulose degrading fungal strains and their biodegradation of corn straw

AN Qi,1, YUAN Yuan2, DAI Yucheng,,2,*, HAN Meiling,,1,*

1 College of Life Sciences, Langfang Normal University, Langfang 065000, Hebei, China

2 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

收稿日期: 2022-06-21   接受日期: 2022-07-25  

基金资助: 国家自然科学基金青年基金(31900009)

Corresponding authors: * E-mail: yuchengdai@bjfu.edu.cn;meilinghan309@163.com;ORCID: DAI Yucheng (0000-0002-6523-0320), HAN Meiling (0000-0003-4936-3083)

Received: 2022-06-21   Accepted: 2022-07-25  

Fund supported: National Natural Science Foundation of China(31900009)

作者简介 About authors

ORCID:ANQi(0000-0001-5917-2497) 。

摘要

以8株野生白腐真菌为研究对象,用愈创木酚筛选培养基对这些菌株进行产木质素酶能力的初筛,并探究初筛后所得菌株在玉米秸秆固态发酵时的漆酶活性及其对玉米秸秆木质纤维素的降解能力。研究结果表明,8株菌株在愈创木酚筛选培养基上均表现出较好的木质素降解酶活性,仅菌株Han 577的菌丝圈直径d1与变色圈直径d2之比大于1。菌株An 369、Han 202和Han 474在玉米秸秆上的最大漆酶活性要远远高于其他菌株,分别为(901.11±42.83)、(698.89±42.17)和(843.61±78.82) U/L。白蜡范氏孔菌An 369、云芝栓孔菌An 174、肺形侧耳An 279和硬毛革孔菌Han 474对玉米秸秆的酸不溶木素降解率均大于20%。云芝栓孔菌An 174、肺形侧耳An 279、梨生多年卧孔菌Han 202对玉米秸秆的纤维素降解率均大于20%。迷宫栓孔菌An 360和肺形侧耳An 279对玉米秸秆半纤维素降解率则大于40%。整体来看,肺形侧耳An 279表现出较好的秸秆降解效率。

关键词: 白腐真菌; 木质纤维素降解; 玉米秸秆; 筛选; 酶活

Abstract

The ligninase producing capacity of 8 wild white-rot fungal strains was screened by guaiacol screening medium, and the laccase activity and lignocellulose degradation capability of degrading corn straw of the strains initially screened were investigated during solid state fermentation. The 8 strains showed good lignin-degrading enzyme activities on guaiacol screening medium. Only the ratio of colony diameter d1 to photochramic laps d2 of strain Han 577 was greater than 1. The maximum laccase activity of strains An 369, Han 202 and Han 474 on degrading corn straw was (901.11±42.83), (698.89±42.17) and (843.61±78.82) U/L, respectively. The acid insoluble lignin degradation rates of corn straw by Vanderbylia fraxinea An 369, Trametes versicolor An 174, Pleurotus pulmonarius An 279 and Coriolopsis trogii Han 474 were all more than 20%. The cellulose degradation rates of corn straw by T. versicolor An 174, P. pulmonarius An 279 and Perenniporia pyricola Han 202 were all more than 20%. The hemicellulose degradation rates of corn straw by T. gibbosa An 360 and P. pulmonarius An 279 were all more than 40%. On the whole, P. pulmonarius An 279 exhibited the best corn straw degradation efficiency.

Keywords: white-rot fungi; lignocellulosic degradation; corn straw; screening; enzyme activity

PDF (589KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

安琪, 员瑗, 戴玉成, 韩美玲. 木质纤维素降解真菌菌株筛选及对玉米秸秆的生物降解研究[J]. 菌物学报, 2023, 42(3): 782-792 doi:10.13346/j.mycosystema.220227

AN Qi, YUAN Yuan, DAI Yucheng, HAN Meiling. Screening of lignocellulose degrading fungal strains and their biodegradation of corn straw[J]. Mycosystema, 2023, 42(3): 782-792 doi:10.13346/j.mycosystema.220227

农作物秸秆是农业生产过程中主要的废弃物,2019年我国秸秆总产量约8.5亿t,其中玉米秸秆的总产量约2.8亿t,占我国秸秆总量的32.94% (国家统计局 2019;常洪艳 2021)。如何有效地利用农作物秸秆,构建农作物秸秆高效降解和转化的循环体系,既是现代农业所必须面临的难题,也是目前许多学者所急切解决的问题。此前,农业秸秆最主要的处理方式是焚烧和随意丢弃任其腐烂,这种处理措施对生态环境造成严重的影响。为此,我国推出了秸秆还田这一举措,不仅能够避免秸秆焚烧所引起的大气污染,还能够增强土壤肥力(甄静等 2017;曹志宏等 2018;An et al. 2021;Han et al. 2021;杨娜等 2021;张芳芳等 2021)。秸秆主要成分为木质纤维素,是重要的可再生资源,其中,玉米秸秆的三大组分含量分别约为木质素(23.68%)、纤维素(41.93%)和半纤维素(24.71%) (Ding et al. 2019),其中木质素分散于纤维素纤维之间,而半纤维素在木质素和纤维素的纤维之间贯穿存在并起连接作用,进而形成了非常牢固的、类似于“钢筋混凝土结构”的纤维素-半纤维素-木质素的结构(图1) (Saha 2003;Mosier et al. 2005;毕于运 2010;安琪 2016;李赫龙 2016;刘霄 2019)。木质素与纤维素和半纤维素所形成的“钢筋混凝土结构”限制了水解酶与纤维素的接触以及木质素自身非水溶性和化学结构的复杂性是导致秸秆难以被降解的主要因素(甄静等 2017)。虽然采用物理或化学的方法能够有效处理农作物秸秆,但通常需要严苛且较为极端的条件(Singh et al. 2015;薛林贵等 2017;Singh et al. 2020;Ma et al. 2020)。而微生物能够通过分泌酶对农作物秸秆进行发酵与降解,在处理农作物秸秆时具有反应条件温和及对环境无二次污染的优点。因此,分离和筛选高效农作物秸秆降解菌具有重要的意义。近年来,许多研究人员陆续分离得到了一些对秸秆具降解能力的菌株,如细菌、真菌和放线菌(Fujimoto et al. 2005;Li et al. 2020;Mei et al. 2020)。张爽(2018)从土壤中分离并筛选获得具纤维素分解能力的3株木霉属的菌株。于慧娟和郭夏丽(2019)通过小麦秸秆粉末平板、刚果红染色法和小麦秸秆的降解率来筛选高效的秸秆降解菌,获得了4株具降解秸秆能力的真菌。黄青盈等(2022)通过食堂的餐厨垃圾、废水和被废水污染的土壤分离、驯化获得具降解秸秆能力的细菌。然而,Shrivastava et al. (2011)通过秸秆降解实验分析发现真菌对秸秆的降解效果是最优的。张斯童等(2016)分析了对不同种类的微生物对秸秆的降解效果,结果表明真菌对秸秆的降解能力要优于放线菌和细菌。

图1

图1   木质纤维素结构示意图(刘霄 2019)

Fig. 1   A representative structure of lignocellulose (Liu 2019).


有研究表明,木质素的降解可以有效地提高纤维素的降解率,而当纤维素被水解时,半纤维素才可能被全部水解(Bourquin et al. 2002;Pollgioni et al. 2015)。因此,筛选出对木质纤维素降解效果好的,尤其是对木质素具有较强降解能力以打破木质素对整个降解过程不利影响的菌株是非常必要的。白腐真菌是一类使木质腐烂成为淡色的海绵状团块的腐生于树木或木材上的真菌,能够通过分泌胞外的木质纤维素酶来降解木质纤维素,且白腐菌是目前为止最主要的、最为有效的降解木质素的真菌,是整个碳素循环的中心,是目前已知的唯一能够在纯培养体系里便可将木素降解为CO2和H2O的一大类真菌(Kirk & Fenn 1982;李慧蓉 2005;Sánchez 2009;Yingkamhaeng et al. 2022)。我国幅员辽阔、森林植被种类繁多,白腐真菌资源极为丰富(Cui et al. 2019)。传统的降解木质素的酶主要包括漆酶、锰过氧化物酶和木素过氧化物酶,其中,漆酶在木质素降解过程中起着非常重要的作用(Arora & Gill 2001)。而降解纤维素和半纤维素的酶主要是纤维素酶(如内切葡聚糖酶、β-葡萄糖苷酶)和半纤维素酶(如木聚糖酶、葡聚糖酶)。

目前采用包括白腐真菌在内的生物降解处理秸秆存在的问题主要是秸秆的化学构成复杂、降解难度大,且缺乏高产酶活菌株。虽然目前已有基于木质素酶筛选秸秆降解白腐真菌的零星报道,但用于筛选及降解秸秆实验的菌株较少(甄静等 2017;张芳芳等 2021)。基于此,本研究对新分离得到的8株白腐真菌进行产漆酶能力的初筛,并对该8株白腐真菌进行玉米秸秆降解能力的探究,以期为白腐真菌的开发与应用提供一定的理论指导,为后续白腐真菌应用于农作物秸秆的生物降解提供借鉴。

1 材料与方法

1.1 材料

1.1.1 供试菌株

本试验所用8株白腐真菌均从野外采集、分离和纯化,全部菌株现均保藏于廊坊师范学院。

1.1.2 试剂

纤维素含量检测试剂盒AKSU007C和半纤维素含量检测试剂盒AKSU008C购自北京盒子生工科技有限公司,2,2ʹ-连氮-双(3-乙基苯并噻唑-6-磺酸)[ABTS]购自Sigma-Aldrich公司,CTAB植物基因组DNA快速提取试剂盒购自北京艾德莱生物科技有限公司。

麦芽浸粉、蛋白胨和酵母浸粉购自北京奥博星生物技术有限责任公司,其他药品购自天津市致远化学试剂有限公司。

1.1.3 试验原料

玉米秸秆(不含叶)取自廊坊市,风干后研磨粒径大小为20-60目。

1.1.4 培养基

完全培养基(CYM):葡萄糖20 g,蛋白胨2 g,酵母浸粉2 g,MgSO4·7H2O 0.5 g,琼脂20 g,K2HPO4·3H2O 1 g,KH2PO4 0.46 g,去离子水1 L。愈创木酚筛选培养基:葡萄糖20 g,蛋白胨2 g,酵母浸粉2 g,MgSO4·7H2O 0.5 g,琼脂20 g,K2HPO4·3H2O 1 g,KH2PO4 0.46 g,愈创木酚0.4 mL,去离子水1 L。苯胺蓝筛选培养基:葡萄糖20 g,蛋白胨2 g,酵母浸粉2 g,MgSO4·7H2O 0.5 g,K2HPO4·3H2O 1 g,KH2PO4 0.46 g,苯胺蓝0.1 g,去离子水1 L。液体培养基:葡萄糖20 g,蛋白胨2 g,酵母浸粉2 g,MgSO4·7H2O 0.5 g,K2HPO4·3H2O 1 g,KH2PO4 0.46 g,去离子水1 L。所有培养基均需121 ℃高温高压蒸汽灭菌30 min。

1.2 方法
1.2.1 菌种的活化

在CYM固体培养基平板上对供试菌株An 369、An 174、An 360、An 279、Han 1504、Han 202、Han 474和Han 577进行活化,于26 ℃避光培养7 d。

1.2.2 菌种的筛选

分别在平板上取直径为5 mm的菌块,接种至含愈创木酚筛选培养基的培养皿上,培养6 d,采用十字划线法,分别测量菌丝生长直径和变色圈直径,每个菌株设置3个重复。

1.2.3 菌种的分子生物学鉴定

用于DNA提取的菌种于CYM固体培养基上生长7 d。用无菌手术刀片刮取培养基表面适量菌丝转入1.5 mL EP管,经研磨后进行DNA提取。参照基因组DNA快速提取试剂盒的说明书并参照Han et al. (2016)的方法进行适当修改。使用通用引物ITS5和ITS4进行PCR扩增获得这8株菌种的ITS序列,PCR扩增程序与体系参照Han et al. (2016)的报道,并送至北京华大科技有限责任公司进行测序。将菌株的ITS序列在NCBI网站上进行BLAST比对,并参考权威或模式菌株序列对菌株进行鉴定。

1.2.4 种子液制备及均质体准备

在活化好的平板上,利用打孔器打取5块直径为1 cm的菌饼接种至内含100 mL液体培养基的250 mL三角瓶中,于26 ℃、150 r/min避光振荡培养7 d,然后用内切式匀浆机对培养物进行匀浆(8 000 r/min、2 min)处理以制备均质体。

1.2.5 玉米秸秆发酵

按照种子液均质体体积:玉米秸秆质量=1:1的比例制作玉米秸秆培养基并在其中接种均质体3 mL,于恒温培养箱中26 ℃避光培养28 d后,取出样品,于55 ℃烘干至恒重。

1.2.6 粗酶液提取

上述玉米秸秆发酵物于恒温培养箱中避光培养35 d,每隔7 d取出玉米秸秆样品3 g,添加50 mL 50 mmol/L的醋酸-醋酸钠缓冲液(pH 5.2)并于10 ℃、150 r/min避光振荡浸提4 h,经滤纸过滤后得到的液体即为粗酶液。

1.2.7 酶活性测定

粗酶液在10 ℃、12 000 r/min离心20 min,所得上清液用于酶活性测定。

漆酶活性测定采用2,2ʹ-连氮-双(3-乙基苯并噻唑-6-磺酸) [ABTS]法(韩美玲等 2020;Han et al. 2021)。定义每分钟1.0 μmol的ABTS被转化所需酶量为一个活力单位,ε420=3.6×104 L/(mol·cm)。

1.2.8 玉米秸秆的木质纤维素含量测定

玉米秸秆的木质素含量测定采用美国可再生能源实验室(NERL)的方法(Sluiter et al. 2008),具体为:取0.3 g玉米秸秆粉末于95%乙醇中抽提6 h,抽提结束后加入72%硫酸3 mL并于30 ℃水浴1 h,再加入84 mL去离子水使得上述体系(粉末和硫酸)被稀释至4%,然后放入到高温高压灭菌锅于121 ℃处理1 h。静置条件下冷却至室温,待酸不溶木素沉积,用预先恒重的G3玻璃滤器进行过滤,并用热的去离子水对残渣进行洗涤,至向洗液中加数滴10%的BaCl2溶液也不会产生沉淀为止。所得滤液用于测定酸溶木素,测定在240 nm处吸光值并乘以25 L/(g·cm)计算酸溶木素含量;滤器和所得残渣于105 ℃烘干至恒重,得酸不溶木素的质量。

玉米秸秆的纤维素和半纤维素总含量测定方法和计算方法均参照纤维素含量检测试剂盒AKSU007C和半纤维素含量检测试剂盒AKSU008C的说明书进行。

2 结果与分析

2.1 菌株鉴定结果

菌株的采集地、寄主等信息见表1,经分子生物学鉴定,分别为白蜡范氏孔菌Vanderbylia fraxinea、云芝栓孔菌Trametes versicolor、迷宫栓孔菌Trametes gibbosa、肺形侧耳Pleurotus pulmonarius、云芝栓孔菌Trametes versicolor、梨生多年卧孔菌Perenniporia pyricola、硬毛革孔菌Coriolopsis trogii和烟管孔菌Bjerkandera adusta

表1   八株白腐真菌的采集地点、寄主、鉴定物种名和对应的GenBank号

Table 1  The locality, host, species name and corresponding GenBank number of eight white-rot fungal strains

菌株
Strain
采集地点
Locality
寄主
Host
鉴定物种名
Name
GenBank号
GenBank number
An 174河南云台山
Yuntai Mountain,
Henan Province
阔叶树树桩
Stump of angiosperm tree
云芝栓孔菌
Trametes versicolor
ON796501
An 279河北邯郸青崖寨
Qingyazhai, Handan,
Hebei Province
阔叶树活树
Living angiosperm tree
肺形侧耳
Pleurotus pulmonarius
ON796502
An 360湖北襄阳紫贞公园
Zizhen Park, Xiangyang,
Hubei Province
垂柳活树
Living tree of Salix babylonica
迷宫栓孔菌
Trametes gibbosa
ON796503
An 369湖北襄阳羊祜山
Yanghu Mountain, Xiangyang,
Hubei Province
阔叶树死树桩
Dead stump of angiosperm
白蜡范氏孔菌
Vanderbylia fraxinea
ON796504
Han 202河北承德老西营村
Laoxiying Village, Chengde,
Hebei Province
梨树活树
Living tree of Pyrus sp.
梨生多年卧孔菌
Perenniporia pyricola
ON796505
Han 474河北廊坊自然公园
Nature Park, Langfang,
Hebei Province
阔叶树落枝
Fallen angiosperm branch
硬毛革孔菌
Coriolopsis trogii
ON796506
Han 577河北石家庄驼梁山
Tuoliang Mountain, Shijiangzhuang,
Hebei Province
阔叶树落枝
Fallen angiosperm branch
烟管孔菌
Bjerkandera adusta
ON796507
Han 1504河北承德雾灵山
Wuling Mountain, Chengde,
Hebei Province
白桦活树
Living tree of Betula platyphylla
云芝栓孔菌
Trametes versicolor
ON796508

新窗口打开| 下载CSV


2.2 菌株初筛结果

在愈创木酚选择培养基平板上分别培养8株白腐真菌6 d,平板的变色情况见表2。根据菌株在愈创木酚筛选培养基上生长和变色情况,可将8株白腐真菌分为2类,分别是:(1) 菌株在平板上生成红褐色的变色圈且变色圈直径小于菌丝圈直径(d1/d2>1),如烟管孔菌Bjerkandera adusta Han 577;(2) 菌株在平板上生成红褐色的变色圈且变色圈直径大于菌丝圈直径(d1/d2<1),如其他7种白腐真菌。初步定性表明这8种白腐真菌均具有降解木质素的能力,后续对这些白腐真菌进行了玉米秸秆降解试验,对其降解能力进行评估。

表2   八株白腐真菌在愈创木酚选择培养基上的显色测定

Table 2  Coloration results of eight white-rot fungal strains on selective medium of guaiacol

菌株
Species
strain
愈创木酚筛选培养基显色
Coloration of guaiacol screening medium
菌落直径d1
Colony diameter
d1 (cm)
变色圈直径d2
Photochramic
laps d2 (cm)
d1/d2
An 1744.9±0.15.9±0.10.83
An 2794.5±0.14.6±0.10.98
An 3603.5±0.14.3±0.00.81
An 3694.6±0.15.4±0.10.85
Han 2022.0±0.13.8±0.10.53
Han 4744.8±0.05.9±0.10.81
Han 5775.4±0.14.9±0.11.10
Han 15044.0±0.15.2±0.10.77

新窗口打开| 下载CSV


2.3 玉米秸秆降解过程中漆酶酶活性分析

供试菌株中,除烟管孔菌B. adusta Han 577外,其余7株在玉米秸秆上发酵的第7天、第14天、第21天和第28天均检测到漆酶活性(图2)。白腐真菌白蜡范氏孔菌V. fraxinea An 369、迷宫栓孔菌T. gibbosa An 360和云芝栓孔菌T. versicolor Han 1504产漆酶活性趋势相似,均在发酵的第7天漆酶活性最高,并于第21天达另一个漆酶活性小高峰;而云芝栓孔菌T. versicolor An 174、肺形侧耳P. pulmonarius An 279、梨生多年卧孔菌P. pyricola Han 202和硬毛革孔菌C. trogii Han 474的产漆酶活性趋势相似,均于发酵的第7天漆酶活性最高并在此后一直下降(图2)。白蜡范氏孔菌V. fraxinea An 369、云芝栓孔菌T. versicolor An 174、迷宫栓孔菌T. gibbosa An 360、肺形侧耳P. pulmonarius An 279、云芝栓孔菌T. versicolor Han 1504、梨生多年卧孔菌P. pyricola Han 202、硬毛革孔菌C. trogii Han 474和烟管孔菌B. adusta Han 577的最大漆酶活性分别为(901.11±42.83)、(207.13±1.40)、(282.92±15.16)、(171.89±10.22)、(70.95±6.19)、(698.89±42.17)、(843.61±78.82)和(0.50±0) U/L。由此可见,V. fraxinea An 369的最大漆酶活性高达(901.11±42.83) U/L,分别为T. versicolor An 174、T. gibbosa An 360、P. pulmonarius An 279、T. versicolor Han 1504、P. pyricola Han 202、C. trogii Han 474和B. adusta Han 577最大漆酶活性的4.35倍、3.19倍、5.24倍、12.70倍、1.29倍、1.07倍和1 802.22倍。相对而言,V. fraxinea An 369、P. pyricola Han 202和C. trogii Han 474最大漆酶活性均很高。整体而言,C. trogii Han 474在检测的整个阶段漆酶活性表现均较高,而烟管孔菌B. adusta Han 577在检测的整个阶段漆酶活性表现极差,几乎检测不到。

图2

图2   八株白腐真菌在玉米秸秆上发酵时漆酶活性

Fig. 2   Laccase activity of eight white rot fungal strains fermentated on corn straw.


2.4 八株白腐真菌对玉米秸秆的降解分析

供试菌株在玉米秸秆上培养28 d后,不同菌株对玉米秸秆木质纤维素降解情况见表3。这8株白腐真菌对木质素降解率可以分为3个类别,分别是:(1) 酸不溶木素降解率高于20%,包括V. fraxinea An 369 (23.23%)、T. versicolor An 174 (23.75%)、P. pulmonarius An 279 (22.49%)和C. trogii Han 474 (24.10%);T. versicolor Han 1504、P. pyricola Han 202和B. adusta Han 577的酸不溶木素降解率介于10%-20%之间,而T. gibbosa An 360的酸不溶木素降解率低于10%。(2) 纤维素降解率>20%,包括T. versicolor An 174 (26.14%)、P. pulmonarius An 279 (21.11%)、P. pyricola Han 202 (23.48%);V. fraxinea An 369、T. gibbosa An 360、T. versicolor Han 1504和C. trogii Han 474的纤维素降解率介于10%-20%之间,而B. adusta Han 577的纤维素降解率仅为4.79%。(3) 半纤维素的降解率:T. gibbosa An 360和P. pulmonarius An 279的半纤维素降解率最高,分别为40.82%和40.66%;B. adusta Han 577降解率为31.04%;V. fraxinea An 369、T. versicolor An 174、T. versicolor Han 1504和P. pyricola Han 202的半纤维素降解率介于10%-20%之间,而C. trogii Han 474的半纤维素降解率为8.28%。整体而言,P. pulmonarius An 279表现出最好的木质纤维素降解效果,其对玉米秸秆的纤维素、半纤维素和木质素的降解率分别为21.11%、40.66%和22.49%。

表3   八株白腐真菌对玉米秸秆中木质纤维素的降解率

Table 3  Degradation rate of lignocellulose of corn straw by 8 white rot fungal strains

菌株
Strain
酸不溶木素降解率
Degradation rate of acid insoluble
lignin (%)
纤维素降解率
Degradation rate of
cellulose (%)
半纤维素降解率
Degradation rate of
hemicellulose (%)
白蜡范氏孔菌
V. fraxinea An 369
23.2316.6218.12
云芝栓孔菌
T. versicolor An 174
23.7526.1413.17
迷宫栓孔菌
T. gibbosa An 360
8.4318.3340.82
肺形侧耳
P. pulmonarius An 279
22.4921.1140.66
云芝栓孔菌
T. versicolor Han 1504
19.6419.4611.88
梨生多年卧孔菌
P. pyricola Han 202
18.9023.4812.18
硬毛革孔菌
C. trogii Han 474
24.1012.368.28
烟管孔菌
B. adusta Han 577
14.804.7931.04

新窗口打开| 下载CSV


3 讨论

木质纤维素的真菌生物降解是环境友好的农业废弃物利用方式,此前有较多研究关注真菌降解山毛榉、毛白杨和圆柏枝等基质,而对于作物秸秆的关注度整体较少(Fukasawa et al. 2005;Wang et al. 2014;康跃等 2019)。目前,涉及到秸秆降解的白腐真菌主要有Pleurotus ostreatusTrametes versicolorPhanerochaete chrysosporiumCoriolopsis gallicaPleurotus sajor-cajuLentinula edodesCeriporiopsis subvermisporaT. betulinaBjerkandera fumosaT. hirsute (Wan & Li 2010;Shrivastava et al. 2011;甄静等 2017;Ding et al. 2019;李灵灵等 2020;张芳芳等 2021),而本研究所使用的白腐真菌云芝栓孔菌Trametes versicolor An 174、肺形侧耳Pleurotus pulmonarius An 279、迷宫栓孔菌T. gibbosa An 360、白蜡范氏孔菌Vanderbylia fraxinea An 369、梨生多年卧孔菌Perenniporia pyricola Han 202、硬毛革孔菌Coriolopsis trogii Han 474、烟管孔菌B. adusta Han 577和云芝栓孔菌T. versicolor Han 1504有被此前研究使用的真菌物种,也添加了新的物种进行对比分析。Ceriporiopsis subvermispora在玉米秸上发酵42 d,对玉米秸的木质素和半纤维素的降解率分别为39.2%和27.0%,而对纤维素的降解率更是低于5% (Wan & Li 2010)。甄静等(2017)分析T. hirsuta XYG422对玉米秸秆的生物降解,发现T. hirsuta XYG422在培养60 d时对玉米秸秆中木质素、纤维素和半纤维素的降解率依次为83.54%、50.65%和19.53%。Ding et al. (2019)分析了T. versicolor CICC 50001、Pleurotus ostreatus CGMCCC 5.374、Phanerochaete chrysosporium CICC 40299、C. gallica CICC 2689、P. sajor-caju CGMCCC 5.593和L. edodes CGMCCC 5.697在玉米秸秆上发酵30 d的木质纤维素组分含量,发现对纤维素、半纤维素和木质素降解率最高的分别是C. gallica CICC 2689 (6.2%)、L. edodes CGMCCC 5.697 (5.34%)和P. sajor-caju CGMCCC 5.593 (4.49%)。T. betulina ZT-153、B. fumosa ZT-307和Phanerochaete chrysosporium CGMCC 5.0776在玉米秸秆上发酵33 d对玉米秸秆酸不溶木质素的降解率为13.60%、21.87%和12.02% (张芳芳等 2021)。而本研究中白蜡范氏孔菌V. fraxinea An 369、云芝栓孔菌T. versicolor An 174、肺形侧耳P. pulmonarius An 279和硬毛革孔菌C. trogii Han 474的酸不溶木素降解率分别为23.23%、23.75%、22.49%和24.10%,由此可见,这4种真菌的木质素降解率较好。T. versicolor BYL-7优化前对水稻秸秆纤维素降解率为12.0%,优化后对水稻秸秆纤维素降解率为13.2% (李灵灵等 2020)。T. betulina ZT-153、B. fumosa ZT-307和P. chrysosporium CGMCC 5.0776在玉米秸秆上发酵33 d对玉米秸秆纤维素降解率分别为17.12%、17.05%和12.56% (张芳芳等 2021)。而本研究中的云芝栓孔菌T. versicolor An 174、肺形侧耳P. pulmonarius An 279、梨生多年卧孔菌P. pyricola Han 202的纤维素降解率分别为26.14%、21.11%和23.48%,与此前研究相比,展现出优异的纤维素降解能力。T. versicolor BYL-7优化前对水稻秸秆半纤维素降解率为17.9%,优化后对水稻秸秆纤维素降解率为21.5% (李灵灵等 2020),而本研究中T. gibbosa An 360、P. pulmonarius An 279和B. adusta Han 577对玉米秸秆半纤维素降解率分别是40.82%、40.66%和31.04%,与之前研究所用菌株相比,半纤维素降解能力极为优异。由此可见,P. pulmonarius An 279对玉米秸秆木质纤维素的降解效果是这8株白腐真菌中最佳的,具高效降解玉米秸秆木质纤维素的能力。

白腐真菌分泌多种胞外酶来降解玉米秸秆的木质纤维素,漆酶是重要的木质素降解酶之一。本研究中,V. fraxinea An 369、C. trogii Han 474和P. pyricola Han 202的最大漆酶活性分别高达(901.11±42.83)、(843.61±78.82)和(698.89±42.17) U/L,而T. versicolor Han 1504和B. adusta Han 577的最大漆酶活性分别为(70.95±6.19) U/L和(0.50±0) U/L。同时,T. versicolor An 174和T. versicolor Han 1504为同种真菌的不同菌株,其最大漆酶活性分别为(207.13±1.40) U/L和(70.95±6.19) U/L。由此可见,不同真菌或同种真菌不同菌株的产漆酶能力存在较大差异。此前已有研究表明,同种真菌的不同菌株在同一培养条件下所分泌的漆酶活性并不相同(Janusz et al. 2015;An et al. 2016)。另一方面,V. fraxinea An 369、C. trogii Han 474和P. pyricola Han 202的最大漆酶活性虽然是最高的,但其对玉米秸秆的酸不溶木素降解率分别为23.23%、24.10%和18.90%,而T. versicolor Han 1504和B. adusta Han 577的最大漆酶活性虽然很低,但其对玉米秸秆的酸不溶木素降解率却分别高达19.64%和14.80%。同样地,T. gibbosa An 360的最大漆酶活性虽远大于B. adusta Han 577,但其对玉米秸秆的酸不溶木素降解率低于B. adusta Han 577。由此可见,通过漆酶活性和酸不溶木素降解率联合分析不难发现漆酶活性的高低并不与酸不溶木素降解率呈现相关性,这可能与其他木质素降解酶(如锰过氧化物酶和木素过氧化物酶等)也能够降解木质素有关。整体来看,本研究中所用大部分白腐真菌菌株对玉米秸秆木质纤维素均表现出较高的降解能力,研究结果为白腐真菌在农作物秸秆的综合利用奠定了良好的基础并展现了广阔的前景。

参考文献

An Q, 2016.

Investigation on enzymatic activities in different Flammulina strains

Master Thesis, Beijing Forestry University, Beijing. 1-75 (in Chinese)

[本文引用: 1]

An Q, Han ML, Wu XJ, Si J, Cui BK, Dai YC, Wu B, 2016.

Laccase production among medicinal mushrooms from the genus Flammulina (Agaricomycetes) under different treatments in submerged fermentation

International Journal of Medicinal Mushrooms, 18(11): 1049-1059

DOI:10.1615/IntJMedMushrooms.v18.i11      URL    

An Q, Li CS, Yang J, Chen SY, Ma KY, Wu ZY, Bian LS, Han ML, 2021.

Evaluation of laccase production by two white-rot fungi using solid-state fermentation with different agricultural and forestry residues

BioResources, 16(3): 5287-5300

DOI:10.15376/biores      URL     [本文引用: 1]

Arora DS, Gill PK, 2001.

Effects of various media and supplements on laccase production by some white rot fungi

Bioresource Technology, 77(1): 89-91

PMID:11211081      [本文引用: 1]

White rot fungi produce three main extracellular enzymes involved in ligninolysis; laccase, lignin peroxidase and manganese peroxidase. Though all white rot fungi do not produce all three enzymes, laccase occupies an important place in ligninolysis. The present paper reports its production by some white rot fungi; Daedalea flavida, Phlebia brevispora, Phlebia radiata and Polyporus sanguineus under different nutritional conditions. Of the various basal media tested, mineral salts malt extract broth proved to be the best medium for laccase production. Sugarcane bagasse proved to be the best laccase inducer among the various supplements added to different media.

Bi YY, 2010. Study on straw resources evaluation and utilization in China. PhD Dissertation, Chinese Academy of Agricultural Sciences, Beijing. 1-229 (in Chinese)

Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ, 2002.

Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues

Plant Cell, 14(12): 3073-3088

DOI:10.1105/tpc.007773      PMID:12468728      [本文引用: 1]

Xyloglucan transglycosylases (XETs) have been implicated in many aspects of cell wall biosynthesis, but their function in vascular tissues, in general, and in the formation of secondary walls, in particular, is less well understood. Using an in situ XET activity assay in poplar stems, we have demonstrated XET activity in xylem and phloem fibers at the stage of secondary wall formation. Immunolocalization of fucosylated xylogucan with CCRC-M1 antibodies showed that levels of this species increased at the border between the primary and secondary wall layers at the time of secondary wall deposition. Furthermore, one of the most abundant XET isoforms in secondary vascular tissues (PttXET16A) was cloned and immunolocalized to fibers at the stage of secondary wall formation. Together, these data strongly suggest that XET has a previously unreported role in restructuring primary walls at the time when secondary wall layers are deposited, probably creating and reinforcing the connections between the primary and secondary wall layers. We also observed that xylogucan is incorporated at a high level in the inner layer of nacreous walls of mature sieve tube elements.

Cao ZH, Huang YL, Hao JM, 2018.

Multi-suitability comprehensive evaluation of crop straw resource utilization in China

Research of Environmental Sciences, 31(1): 179-186 (in Chinese)

Chang HY, 2021.

Research on degradation effect and mechanism of low temperature straw degradation bacteria to corn straw

Master Thesis, Jilin Agricultural University, Changchun. 1-47 (in Chinese)

Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC, 2019.

Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China

Fungal Diversity, 97(1): 137-392

DOI:10.1007/s13225-019-00427-4      [本文引用: 1]

Ding CH, Wang X, Li MX, 2019.

Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol

Applied Microbiology and Biotechnology, 103(14): 5641-5652

DOI:10.1007/s00253-019-09884-y      PMID:31115636      [本文引用: 3]

Fungal pretreatment on lignocellulosic biomass has the advantages of being eco-friendly, having low operating cost, and producing no inhibitor. In this study, six white-rot fungi (Trametes versicolor, Pleurotus ostreatus, Phanerochaete chrysosporium, Coriolopsis gallica, Pleurotus sajor-caju, Lentinula edodes) were applied to corn stover pretreatment. Biomass degradation, production of enzymes, reducing sugar via hydrolysis, and ethanol yield via yeast fermentation were quantified during 30 days cultivation, and samples were taken every 5 days. Among six fungi, the highest lignin degradation was 38.29% at 30 days for P. sajor-caju pretreatment, the highest sugar yield was 71.24%, and the highest ethanol yield was 0.124 g g corn stover under P. sajor-caju pretreatment for 25 days. The highest activities of laccase and manganese peroxidase were 29.22 and 10.22 U g dry biomass, respectively, under T. versicolor pretreatment at 25 days. The highest levels of enzyme, sugar, and ethanol production are comparable or higher than what has been reported in previous literature. P. sajor-caju is one of the most widely worldwide cultivated mushrooms. The findings in this study show the potential to incorporate P. sajor-caju mushroom cultivation into corn stover pretreatment to enhance the production of a suite of products such as enzymes, sugars, and ethanol.

Fujimoto A, Matsumoto Y, Chang HM, Meshitsuka G, 2005.

Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin

Journal of Wood Science, 51(1): 89-91

DOI:10.1007/s10086-004-0682-7      URL     [本文引用: 1]

Fukasawa Y, Osono T, Takeda H, 2005.

Decomposition of Japanese beech wood by diverse fungi isolated from a cool temperate deciduous forest

Mycoscience, 46: 97-101

DOI:10.1007/S10267-004-0215-7      URL     [本文引用: 1]

Han ML, Bian LS, Jiang HH, An Q, 2020.

Effects of different carbon and nitrogen sources on lignocellulolytic enzyme activities of Pleurotus ostreatus

Mycosystema, 39(8): 1538-1550 (in Chinese)

Han ML, Chen YY, Shen LL, Song J, Vlasák J, Dai YC, Cui BK, 2016.

Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera

Fungal Diversity, 80: 343-373

DOI:10.1007/s13225-016-0364-y      URL     [本文引用: 2]

Han ML, Yang J, Liu ZY, Wang CR, Chen SY, Han N, Hao WY, An Q, Dai YC, 2021.

Evaluation of laccase activities by three newly isolated fungal species in submerged fermentation with single or mixed lignocellulosic wastes

Frontiers in Microbiology, 12: 682679

DOI:10.3389/fmicb.2021.682679      URL     [本文引用: 2]

Three newly isolated fungal species, namely, Cerrena unicolor Han 849, Lenzites betulina Han 851, and Schizophyllum commune Han 881, isolated from their native habitats in Wulingshan National Nature Reserve of Hebei Province of northern China, were screened for laccase production with single or mixed lignocellulosic wastes. C. unicolor Han 849 was found to express the highest levels of laccase with single or mixed lignocellulosic wastes compared with L. betulina Han 851 and S. commune Han 881. The highest laccase activity from the mixed fungal culture of C. unicolor Han 849 and S. commune Han 881 or L. betulina Han 851 on Firmiana platanifolia was 1,373.12 ± 55.93 and 1,144.85 ± 34.97 U/L, respectively, higher than that from other tested conditions. L. betulina Han 851 or S. commune Han 881 mixed with other species was also helpful for accelerating laccase secretion due to reach maximum enzyme activity quickly. The treatment of mixing different species, including the mixture of two or three species, was obviously conducive to the improvement of laccase activity on Firmiana platanifolia. These results revealed that the fungal co-culture and the mixed lignocellulosic wastes contribute to the improvement of laccase activities and enhance laccase activities within a short period. These findings would be helpful for providing a new method for rapid production of low-cost laccase and for optimization of integrated industrial laccase production.

Huang QY, JX, He QY, Wu Q, Liu MQ, 2022.

Screening and determination of cellulose-degrading strains and their utilization in degrading straw

Journal of Fudan University (Natural Science), 61(1): 34-42 (in Chinese)

Janusz G, Czuryło A, Frąc M, Rola B, Sulej J, Pawlik A, Siwulski M, Rogalski J, 2015.

Laccase production and metabolic diversity among Flammulina velutipes strains

World Journal of Microbiology and Biotechnology, 31(1): 121-133

DOI:10.1007/s11274-014-1769-y      URL     [本文引用: 1]

Kang Y, Li SY, Sun XY, Gong XQ, Yu KF, Cai LL, Wang L, 2019.

Study on screening, identification and capability of lignin-degrading fungi for landscaping waste

Forest Research, 32(3): 80-87 (in Chinese)

Kirk TK, Fenn P, 1982. Formation and action of the ligninolytic system in basidiomycetes. In: Frankland JC, Hedger JN, Swift MJ (eds.) Decomposer basidiomycetes: their biology and ecology. Cambridge University Press, Cambridge. 67-90

[本文引用: 1]

Li HL, 2016.

Isolation and structure characterization of lignin and hemicelluloses from crop straw

Master Thesis, Northwest A&F University, Yangling. 1-57 (in Chinese)

Li HR, 2005.

Biology and biotechnology of white-rot fungi

Chemical Industry Press, Beijing. 1-317 (in Chinese)

Li LL, Wang JH, Zhao D, Liu JL, Shen GN, Yuan Y, Gao YM, Yan L, Wei D, Wang WD, 2020.

Screening of lignin degrading strain BYL-7 and optimization of degradation conditions

Microbiology China, 47(12): 4059-4071 (in Chinese)

[本文引用: 1]

Li PP, He C, Li G, Ding P, Lan MM, Gao Z, Jiao YZ, 2020.

Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production

Bioengineered, 11(1): 251-260

DOI:10.1080/21655979.2020.1733733      PMID:32125259     

In order to explore the effect of pretreatment on corn straw degradation and biogas production, corn straw was pretreated with mixed microbes and composting at 30°C for 14 days. The characteristics of material were measured and analyzed in the pretreatment process. Then, the pretreated and untreated corn straw was digested by anaerobic fermentation. Gas production and methane content of corn straw were analyzed. The results showed that the biological pretreatment process with mixed microbes could accelerate the degradation rate of straw and increase the degradation efficiency of lignin. The pH value of material was more stable, and the content of organic matter in the material was higher in the pretreatment process of corn straw with mixed microbes. The Scanning Electron Microscope (SEM) images showed that the structure of the lignocellulose was changed by mixed microbes, increasing the exposed area of cellulose and hemicellulose, which was beneficial to improve the utilization efficiency of straw. The degradation rates of hemicellulose, cellulose and lignin were 44.4%, 34.9% and 39.2%, respectively, after the pretreatment process with mixed microbes. Pretreatment was more helpful to increase the methane content in the anaerobic fermentation process of corn straw pretreated with mixed microbes, and could also shorten the fermentation period.

Liu X, 2019.

Construction and effectiveness of a high efficient complex microbial system for corn straw degradation

Master Thesis, Northeast Agricultural University, Harbin. 1-61 (in Chinese)

[本文引用: 1]

Ma LL, Lu YY, Yan H, Wang X, Yi YL, Shan YY, Liu BF, Zhou Y, X, 2020.

Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus

BMC Biotechnology, 20(6): 1-13

DOI:10.1186/s12896-019-0592-9      [本文引用: 1]

The use of biomaterials has been expanded to improve the characteristics of vaccines. Recently we have identified that the peptide PH(1–110) from polyhedrin self-aggregates and incorporates foreign proteins to form particles. We have proposed that this peptide can be used as an antigen carrying system for vaccines. However, the immune response generated by the antigen fused to the peptide has not been fully characterized. In addition, the adjuvant effect and thermostability of the particles has not been evaluated.

Mei JF, Shen XB, Gang LP, Xu HJ, Wu FF, Sheng LQ, 2020.

A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently

Bioresource Technology, 310: 123445

DOI:10.1016/j.biortech.2020.123445      URL     [本文引用: 1]

Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, 2005.

Features of promising technologies for pretreatment of lignocellulosic biomass

Bioresource Technology, 96(6): 673-686

DOI:10.1016/j.biortech.2004.06.025      PMID:15588770      [本文引用: 1]

Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.

National Bureau of Statistics, 2019.

China statistical yearbook

China Statistics Press, Beijing. 1-1017 (in Chinese)

Pollgioni T, Tonin F, Rosini E, 2015.

Ligin-degrading enzyme

The FEBS Journal, 282(7): 1190-1213

DOI:10.1111/febs.2015.282.issue-7      URL     [本文引用: 1]

Saha BC, 2003.

Hemicellulose bioconversion

Journal of Industrial Microbiology and Biotechnology, 30(5): 279-291

DOI:10.1007/s10295-003-0049-x      PMID:12698321      [本文引用: 1]

Various agricultural residues, such as corn fiber, corn stover, wheat straw, rice straw, and sugarcane bagasse, contain about 20-40% hemicellulose, the second most abundant polysaccharide in nature. The conversion of hemicellulose to fuels and chemicals is problematic. In this paper, various pretreatment options as well as enzymatic saccharification of lignocellulosic biomass to fermentable sugars is reviewed. Our research dealing with the pretreatment and enzymatic saccharification of corn fiber and development of novel and improved enzymes such as endo-xylanase, beta-xylosidase, and alpha- l-arabinofuranosidase for hemicellulose bioconversion is described. The barriers, progress, and prospects of developing an environmentally benign bioprocess for large-scale conversion of hemicellulose to fuel ethanol, xylitol, 2,3-butanediol, and other value-added fermentation products are highlighted.

Sánchez C, 2009.

Lignocellulosic residues: biodegradation and bioconversion by fungi

Biotechnology Advances, 27(2): 185-194

DOI:10.1016/j.biotechadv.2008.11.001      PMID:19100826      [本文引用: 1]

The ability of fungi to degrade lignocellulosic materials is due to their highly efficient enzymatic system. Fungi have two types of extracellular enzymatic systems; the hydrolytic system, which produces hydrolases that are responsible for polysaccharide degradation and a unique oxidative and extracellular ligninolytic system, which degrades lignin and opens phenyl rings. Lignocellulosic residues from wood, grass, agricultural, forestry wastes and municipal solid wastes are particularly abundant in nature and have a potential for bioconversion. Accumulation of lignocellulosic materials in large quantities in places where agricultural residues present a disposal problem results not only in deterioration of the environment but also in loss of potentially valuable material that can be used in paper manufacture, biomass fuel production, composting, human and animal feed among others. Several novel markets for lignocellulosic residues have been identified recently. The use of fungi in low cost bioremediation projects might be attractive given their lignocellulose hydrolysis enzyme machinery.

Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC, 2011.

White-rot fungal conversion of wheat straw to energy rich cattle feed

Biodegradation, 22(4): 823-831

DOI:10.1007/s10532-010-9408-2      PMID:20734121      [本文引用: 2]

In order to improve the digestibility and nutrient availability in rumen, wheat straw was subjected to solid state fermentation (SSF) with white-rot fungi (i.e. Pleurotus ostreatus and Trametes versicolor) and the fermented biomass (called myco-straw) was evaluated for biochemical, enzymatic and nutritional parameters. The fungal treatment after 30 days led to significant decrease (P < 0.05) in cell wall constituents viz, acid detergent fiber (ADF), neutral detergent fiber (NDF), hemicellulose, lignin and cellulose to the extent of 35.00, 38.88, 45.00, 37.48 and 37.86%, respectively in P. ostreatus fermented straw, while 30.04, 33.85, 39.90, 31.29 and 34.00%, respectively in T. versicolor fermented straw. However, maximum efficiency of fermentation in terms of low carbohydrate consumption per unit of lignin degradation, favoring cattle feed production was observed for P. ostreatus on the 10th day (17.12%) as compared with T. versicolor on the 30th day (16.91%). The myco-straw was found to contain significantly high (P < 0.05) crude protein (CP; 4.77% T. versicolor, 5.08% P. ostreatus) as compared to control straw (3.37%). Metabolizable energy (ME, MJ/kg DM), percent organic matter digestibility (OMD) and short chain fatty acids (SCFAs; mmol) production also increased considerably from control straw (4.40, 29.91 and 0.292) to a maximum up to P. ostreatus fermented straw (4.92, 33.39 and 0.376 on 20th day) and T. versicolor fermented straw (4.66, 31.74 and 0.334 on 10th day), respectively. Moreover, the myco-straw had lower organic carbon and was rich in nitrogen with lower C/N ratio as compared to control wheat straw. Results suggest that the fungal fermentation of wheat straw effectively improved CP content, OM digestibility, SCFAs production, ME value and simultaneously lowered the C/N ratio, thus showing potential for bioconversion of lignin rich wheat straw into high energy cattle feed.

Singh D, Gupta N, 2020.

Microbial laccase: a robust enzyme and its industrial applications

Biologia, 75(8): 1183-1193

DOI:10.2478/s11756-019-00414-9      [本文引用: 1]

Singh J, Suhag M, Dhaka A, 2015.

Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review

Carbohydrate Polymers, 117: 624-631

DOI:10.1016/j.carbpol.2014.10.012      PMID:25498680      [本文引用: 1]

Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, 2008. Laboratory analytical procedure (LAP): determination of structural carbohydrates and lignin in biomass. Technical Report: NREL/TP-510-42618. National Renewable Energy Laboratory, Colorado.

[本文引用: 1]

Wan CX, Li YB, 2010.

Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility

Enzyme and Microbial Technology, 47(1-2): 31-36

DOI:10.1016/j.enzmictec.2010.04.001      URL     [本文引用: 2]

Wang W, Yuan TQ, Cui BK, 2014.

Biological pretreatment with white rot fungi and their co-culture to overcome lignocellulosic recalcitrance for improved enzymatic digestion

BioResources, 9(3): 3968-3976

[本文引用: 1]

Xue LG, Yang RQ, Ma GG, Li GQ, Li WW, Mo TL, 2017.

Progress in research of straw biodegradation mechanisms and functional microbial flora

Ecological Science, 36(3): 193-199 (in Chinese)

Yang N, He X, Du CM, 2021.

Screening and identification of a cellulose degrading strain

Chinese Agricultural Science Bulletin, 37(17): 26-31 (in Chinese)

DOI:10.11924/j.issn.1000-6850.casb2021-0131     

To solve the problem of low degradation rate of corn straw, stable cellulose degrading bacteria were screened from natural fermentation compost with amino acid tail liquor as the nitrogen source, aiming to lay a foundation for the preparation of efficient straw decomposition agent. Congo red staining method was adopted for preliminary screening, the determination of cellulase activity and the loss rate of corn straw weight were used for re-screening, and morphological and molecular biological methods were used to identify the efficient degrading strain. The results showed that an efficient cellulose degrading strain, SC2, was obtained. The filter paper enzyme activity, endoglucanase activity, exoglucanase activity and β-glucosidase activity of SC2 was 17.70 U/mL, 58.97 U/mL, 16.85 U/mL and 79.26 U/mL, respectively. The degradation rate of corn straw reached 33.07%. According to the colony characteristics, sporulation structure, spore morphology and ITS sequence, SC2 was identified as Aspergillus niger. Strain SC2 has good cellulose degradation ability, can effectively promote the degradation of straw and be used to prepare corn straw decomposing agent.

Yingkamhaeng N, Nimchua T, Pinmanee P, Suwanprateep J, Rungmekarat S, Sukyai P, 2022.

Synergistic effect of xylanase and laccase on structural features of energy cane

Industrial Crops and Products, 176: 114410

DOI:10.1016/j.indcrop.2021.114410      URL     [本文引用: 1]

Yu HJ, Guo XL, 2019.

Screening of straw-degrading bacteria and study on their cellulose degrading performances

Biotechnology Bulletin, 35(2): 58-63 (in Chinese)

Zhang FF, Zhang T, Dai D, Zhang ZH, Zhang B, Li Y, 2021.

Screening of efficient lignin-degrading fungal strains and their degradation on cornstalk

Mycosystema, 40(7): 1869-1880 (in Chinese)

Zhang S, 2018.

The screening of cellulose degrading strains and application to corn straw in low temperature

Master Thesis, Northeast Agricultural University, Harbin. 1-42 (in Chinese)

Zhang ST, Lan X, Li Z, Chen G, 2016.

Research progress of microbial degradation of corn straw

Journal of Jilin Agricultural University, 38(5): 517-522 (in Chinese)

Zhen J, Li GJ, Li W, Du ZM, Wang JW, Yin WB, Chen GC, 2017.

Fermentation condition optimization of laccase producing strain Trametes hirsuta XYG422 and its activity on corn straw degradation

Mycosystema, 36(6): 718-729 (in Chinese)

安琪, 2016. 冬菇不同菌株酶活性的研究. 北京林业大学硕士论文, 北京. 1-75

[本文引用: 1]

毕于运, 2010. 秸秆资源评价与利用研究. 中国农业科学院博士论文, 北京. 1-229

[本文引用: 1]

曹志宏, 黄艳丽, 郝晋珉, 2018.

中国作物秸秆资源利用潜力的多适宜性综合评价

环境科学研究, 31(1): 179-186

[本文引用: 1]

常洪艳, 2021. 低温秸秆降解菌对玉米秸秆的降解效果及机理研究. 吉林农业大学硕士论文, 长春. 1-47

[本文引用: 1]

国家统计局, 2019. 中国统计年鉴. 北京: 中国统计出版社. 1-1017

[本文引用: 1]

韩美玲, 边禄森, 姜宏浩, 安琪, 2020.

不同碳氮源对糙皮侧耳木质纤维素酶活性的影响

菌物学报, 39(8): 1538-1550

[本文引用: 1]

黄青盈, 吕嘉昕, 何秋愉, 武全, 刘明秋, 2022.

纤维素降解菌种的筛选测定及其对秸秆的降解

复旦学报(自然科学版), 61(1): 34-42

[本文引用: 1]

康跃, 李素艳, 孙向阳, 龚小强, 余克非, 蔡琳琳, 王琳, 2019.

园林废弃物木质素降解真菌的筛选、鉴别及其能力研究

林业科学研究, 32(3): 80-87

[本文引用: 1]

李赫龙, 2016. 作物秸秆木质素和半纤维素的分离纯化及结构表征. 西北农林科技大学硕士论文, 杨凌. 1-57

[本文引用: 1]

李慧蓉, 2005. 白腐真菌生物学和生物技术. 北京: 化学工业出版社. 1-317

[本文引用: 1]

李灵灵, 王敬红, 赵铎, 刘嘉乐, 申贵男, 袁媛, 高亚梅, 晏磊, 魏丹, 王伟东, 2020.

木质素降解菌BYL-7的筛选及降解条件优化

微生物学通报, 47(12): 4059-4071

[本文引用: 3]

刘霄, 2019. 高效降解玉米秸秆复合菌群的构建及其降解效果研究. 东北农业大学硕士论文, 哈尔滨. 1-61

[本文引用: 2]

薛林贵, 杨蕊琪, 马高高, 李国强, 李文伟, 莫天录, 2017.

秸秆的生物降解机理及其功能微生物菌群研究进展

生态科学, 36(3): 193-199

[本文引用: 1]

杨娜, 何鑫, 杜春梅, 2021.

一株纤维素降解菌的筛选与鉴定

中国农学通报, 37(17): 26-31

DOI:10.11924/j.issn.1000-6850.casb2021-0131      [本文引用: 1]

为了解决玉米秸秆降解率低下问题,本研究从以氨基酸尾液为氮源的自然发酵堆肥中筛选稳定的纤维素降解菌,为制备高效的秸秆腐熟剂奠定基础。采用刚果红染色法进行初筛、采用纤维素酶活测定及玉米秸秆降解率测定来进行复筛,并通过形态学及分子生物学方法对高效降解菌株进行鉴定。结果表明筛选得到一株高效降解纤维素的菌株SC2,其滤纸酶活、内切葡聚糖酶活、外切葡聚糖酶活和β-葡聚糖苷酶活分别为17.70、58.97、16.85和79.26 U/mL,对玉米秸秆的降解率达到33.07%,根据其菌落特征、产孢结构、孢子形态及ITS序列鉴定SC2为黑曲霉(Aspergillus niger)。菌株SC2具有较好的纤维素降解能力,能够有效的促进秸秆的降解,可以用于制备玉米秸秆腐熟剂。

于慧娟, 郭夏丽, 2019.

秸秆降解菌的筛选及其纤维素降解性能的研究

生物技术通报, 35(2): 58-63

DOI:10.13560/j.cnki.biotech.bull.1985.2018-0731      [本文引用: 1]

通过秸秆粉平板、刚果红染色法以及小麦秸秆降解率来筛选高效秸秆降解菌,并测定菌株的胞外纤维素酶活来研究其秸秆纤维素的降解能力。结果表明,在所筛选的4株真菌中,菌株z-5的秸秆降解率最高,为47%;其次是菌株4-1、3-1和2-2,分别为45%、32%和31%,滤纸腐解实验结果与秸秆降解试验结果相似。4株秸秆降解菌均具有外切葡聚糖酶、内切葡聚糖酶和&#x003b2;-葡萄糖苷酶等3种纤维素酶,但变化趋势不同。菌株z-5和菌株4-1的三种酶活呈现出较好的协同性,菌株2-2和菌株3-1协同性较弱。通过秸秆粉平板,秸秆降解率测定以及滤纸孔洞法可以更准确快速地得到目的菌株;纤维素酶在秸秆降解中起着主导作用。

张芳芳, 张桐, 戴丹, 张振豪, 张波, 李玉, 2021.

高效木质素降解菌的筛选及其对玉米秸秆的降解效果

菌物学报, 40(7): 1869-1880

[本文引用: 5]

张爽, 2018. 低温纤维素降解菌的筛选及其玉米秸秆降解效果研究. 东北农业大学硕士论文, 哈尔滨. 1-42

[本文引用: 1]

张斯童, 兰雪, 李哲, 陈光, 2016.

微生物降解玉米秸秆的研究进展

吉林农业大学学报, 38(5): 517-522

[本文引用: 1]

甄静, 李冠杰, 李伟, 杜志敏, 王继雯, 尹文兵, 陈国参, 2017.

毛栓孔菌XYG422菌株产漆酶发酵条件优化及对玉米秸秆生物降解的研究

菌物学报, 36(6): 718-729

[本文引用: 5]

/