
基于GC-MS和UPLC-QTOF/MS技术的灵芝孢子粉化学成分分析
佘新松,姚婷,韩燕峰,甘卓亭,周蔚,袁旺生,唐敏
菌物学报 ›› 2020, Vol. 39 ›› Issue (5) : 881-906.
基于GC-MS和UPLC-QTOF/MS技术的灵芝孢子粉化学成分分析
Chemical compositions of Ganoderma lingzhi spore powder analysed by GC/MS and UPLC-QTOF/MS
采用极性不同的6种溶剂(石油醚、乙酸乙酯、丙酮、乙醇、甲醇和水)、按索氏提取法逐级萃取破壁灵芝孢子粉,并同时运用气相色谱-质谱联用(GC/MS)和超高效液相串联四极杆飞行时间质谱(UPLC-QTOF/MS)技术对各萃取物进行化学成分分析与鉴定。结果表明:GC/MS共鉴定出101种化合物,其中酸类10种、酯类40种、醇类7种、酮类6种、酚类2种、烃类18种、甾类9种和杂原子化合物9种;UPLC-Q-TOF/MS共推断出40种化合物,其中倍半萜类1种、二萜类1种、三萜类9种、生物碱类4种、酰胺类7种、有机酸类9种以及其他化合物9种。两种测定方法间共有化合物仅1种,仅存在于5种有机溶剂(石油醚、乙酸乙酯、丙酮、乙醇和甲醇)萃取物之一的化合物共105种,2种或2种以上萃取物共有的化合物共31种,实验方法较好地实现了样品中化合物组分的充分分离,扩大了可检测化合物的范围。研究结果为灵芝孢子粉中化学成分的系统分析与鉴定、及灵芝孢子粉的化合物谱图库的完善提供了基础资料,为相关药理、药效分析及灵芝的药用模式真菌研究提供参考。
Sporoderm-broken Ganoderma lingzhi spore powder was extracted fractionally with soxhlet extraction method using petroleum ether, ethyl acetate, acetone, ethanol, methanol and water as solvents with different proper polarity, and six extracts were obtained. The extracts were analyzed with gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography coupled with electrospray time-of-flight/mass spectrometry (UPLC-QTOF/MS). A total of 101 compounds is identified, including 10 acids, 40 esters, 7 alcohols, 6 ketones, 2 phenols, 18 hydrocarbons, 9 steroids and 9 heteroatom- containing compounds. 40 compounds are detected using UPLC-QTOF/MS, including 1 sesquiterpene, 1 diterpenoid, 9 triterpenes, 4 alkaloids, 7 amides, 9 organic acids and 9 other compounds. Only 1 compound is in common among those obtained by GC/MS and UPLC-QTOF/MS analyses. 105 compounds strickly present in their own selective extract and not reappear in other unselective one, but there are 31 compounds which can simultaneously present in two or more extracts. The method is proved to be better for separating the multi-component composition and widening the detection range of the compounds in Ganoderma lingzhi spore powder.
灵芝孢子粉 / 气相色谱-质谱联用 / 超高效液相串联四极杆飞行时间质谱 / 分级萃取 {{custom_keyword}} /
Ganoderma lingzhi spore powder / gas chromatography-mass spectrometry / ultra-performance liquid chromatography coupled with electrospray time-of-flight /mass spectrometry / fractional extraction {{custom_keyword}} /
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
"Lingzhi" is a mushroom that has been renowned in China for more than 2,000 years because of its claimed medicinal properties plus its symbolic fortune. "Lingzhi" has high economic value mostly as a dietary supplement in the modern market especially in East Asia, and its medicinal functions have become a hot study topic. For over a century, the highly prized medicinal fungus, known as "Lingzhi" in East Asia, has been assigned to Ganoderma lucidum, a species originally described from Europe. Molecular studies in recent years have revealed that the commercially cultivated 'G. lucidum' ("Lingzhi") in East Asia is a different species from the true G. lucidum. The present study aims to clarify the species identity of "Lingzhi" based on morphological studies and analysis of rDNA nuc-ITS sequences, and additional gene fragments of mt-SSU, RPB1, RPB2, and TEF1-alpha of "Lingzhi" were provided. All Ganoderma species that mostly resemble "Lingzhi" in phylogeny and /or morphology were included for analysis. We propose a new species G. lingzhi for "Lingzhi", which has an East Asia distribution. The most striking characteristics which differentiate G. lingzhi from G. lucidum are the presence of melanoid bands in the context, a yellow pore surface and thick dissepiments (80-120 mu m) at maturity. G. curtisii is most closely related to G. lingzhi in phylogeny and is from North America. Ganoderma flexipes, G. multipileum, G. sichuanense, G. tropicum and 'G. tsugae', are also closely related with G. lingzhi and are reported from China. These species are compared and discussed. 'Ganoderma tsuage' reported from China is determined as conspecific with G. lucidum, hence the distribution of G. lucidum extends from Europe to northeastern China.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
“Lingzhi” is one of the most important medicinal fungi, and it has been renowned and utilized in China for more than 2,000 years. Ganoderma lucidum was originally described for Britain specimens by William Curtis as Boletus lucidus in 1871. Patouillard first reported Ganoderma lucidum from China in 1907. Thereafter this scientific name (binomial name) has been used for the Chinese medicinal “Lingzhi” for more than 100 years. However, the recent taxonomical studies indicated the Chinese “Lingzhi” is different from G. lucidum in both phylogeny and morphology. The Chinese “Lingzhi” is an independent species, and its valid scientific name is G. lingzhi rather than G. lucidum. Ganoderma lingzhi has a wide distribution in warm temperate and subtropical East Asia, and it differs from G. lucidum by its pale yellow to sulphur yellow pore surface when fresh, the presence of melanoid bands in the context and thick dissepiments (80–120μm) at maturity, while G. lucidum has a distribution mostly in Europe, but also in northeast, northern, central and highland of southwest China, and it lacks melanoid bands in the context, and has a white to cream pore surface and thin dissepiments (40–80μm). Ganoderma sichuanense was originally described from Panzhihua of Sichuan Province, China. Based on the ITS sequence of its holotype, it differs from G. lingzhi in phylogeny. In addition, it was also recently found in Guangdong Province, China.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
Ganoderma lucidum is one of the most extensively studied mushrooms due to its medicinal properties. Herein, a systematic study was carried out in order to compare the antioxidant activity of phenolic and polysaccharidic extracts from fruiting body, spores and mycelium, obtained in three different culture media, of G. lucidum from Northeast Portugal. Phenolic extracts were characterized using high-performance liquid chromatography coupled to photodiode array detection, while polysaccharidic extracts were hydrolysed and further characterized using HPLC and refraction index detection. In general, the phenolic extracts (Ph) proved to have higher antioxidant potential than their corresponding polysaccharidic extracts (Ps). Amongst phenolic extracts, FB-Ph provided the highest antioxidant activity (EC50 <= 0.6 mg/ml) and the highest content in total phenolics (similar to 29 mg GAE/g extract) and phenolic acids (p-hydroxybenzoic and p-coumaric acids). S-Ps was the polysaccharidic extract with the best antioxidant activity (EC50 <= 2="" mgml="" nevertheless="" the="" highest="" levels="" of="" total="" phenolics="" were="" obtained="" in="" fb-ps="" similar="" to="" 56="" mg="" gaeg="" extract="" while="" the="" highest="" levels="" of="" total="" polysaccharides="" similar="" to="" 14="" mg="" peg="" extract="" and="" individual="" sugars="" were="" observed="" in="" mycelia="" obtained="" from="" solid="" culture="" media="" m-pda-ps="" and="" m-smmn-ps.="" the="" free="" radical="" scavenging="" properties="" reducing="" power="" and="" lipid="" peroxidation="" inhibition="" of="" g.="" lucidum="" seemed="" to="" be="" correlated="" with="" phenolic="" compounds="" mostly="" in="" a="" free="" form="" but="" also="" linked="" to="" polysaccharides.="" c="" 2011="" elsevier="" ltd.="">
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
Oleamide is an endocannabinoid-like, fatty acid amide with structural similarities to anandamide. The cardiovascular effects of anandamide are enhanced in hypertension and we have now examined how hypertension affects responses to oleamide. Vasorelaxant responses to oleamide were significantly (P<0.001) enhanced="" in="" aortic="" rings="" from="" spontaneously="" hypertensive="" rats="" shrs="" such="" that="" the="" maximal="" relaxation="" to="" oleamide="" was="" 40.3="" -="" 3.5="" compared="" to="" 15.7="" -="" 3.9="" in="" normotensive="" wistar="" kyoto="" wky="" controls.="" the="" augmented="" responses="" to="" oleamide="" in="" shr="" arteries="" were="" unaffected="" by="" either="" inhibition="" of="" nitric="" oxide="" synthase="" 300="" mu="" m="" l-name="" or="" fatty="" acid="" amide="" hydrolase="" 1="" mu="" m="" urb597="" and="" independent="" of="" cannabinoid="" cb1="" receptors="" or="" the="" endothelium.="" the="" enhanced="" responses="" to="" oleamide="" were="" opposed="" by="" pre-treatment="" with="" capsaicin="" such="" that="" r-max="" was="" reduced="" to="" 9.8="" -="" 1.5="" and="" this="" occurred="" independently="" of="" trpv1="" receptor="" and="" sensory="" nerve="" activity="" as="" the="" trpv1="" antagonist="" capsazepine="" 1-5="" mu="" m="" and="" the="" cation="" channel="" inhibitor="" ruthenium="" red="" 10="" mu="" m="" had="" no="" effect="" the="" responses="" to="" oleamide.="" however="" inhibition="" of="" cyclooxygenase="" 10="" mu="" m="" indomethacin="" enhanced="" the="" responses="" in="" the="" wky="" aortae="" such="" that="" the="" responses="" were="" comparable="" to="" those="" in="" the="" shr.="" the="" results="" suggest="" that="" the="" cyclooxygenase="" pathway="" has="" a="" role="" in="" modulating="" vasorelaxation="" caused="" by="" oleamide="" in="" normotensive="" aortae="" and="" that="" this="" is="" lost="" in="" hypertension="" possibly="" as="" an="" adaptation="" to="" the="" increase="" in="" blood="" pressure.="" c="" 2012="" elsevier="" b.v.="">
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
In this work, the effects of a pair of positional isomer of ganoderic acids (GAS), namely ganoderic acid Mf (GA-Mf) and ganoderic acid S (GA-S) purified from the fermented mycelia of Ganoderma lucidum, on induction of cell apoptosis and the apoptotic pathway in HeLa cells were investigated. The results demonstrate that both isomers decreased cell population growth on various human carcinoma cell lines by MTT assay, while GA-Mf had better selectivity between normal and cancer cells. The flow cytometry analysis indicated that treatment of HeLa cells with GA-S caused cell cycle arrest in the S phase, while GA-Mf caused cell cycle arrest in the G1 phase. Compared with GA-S. GA-Mf had more potent increase in the number of early and late apoptotic cells. Treatment of HeLa cells with each isomer decreased the mitochondria membrane potential and caused the release of cytochrome c from mitochondria into the cytosol. In addition, stimulation of caspase-3 and caspase-9 activity was observed. The Bax/Bcl-2 ratio was also increased in GA-treated HeLa cells. The results demonstrated that both isomers GA-Mf and GAS induced apoptosis of human HeLa cells through a mitochondria mediated pathway, but they had the different cell cycle arrest specificity. The findings will be helpful to the development of useful cancer chemopreventive compounds from G. lucidum. (C) 2010 Elsevier GmbH.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
柴玉 , 2018. 灵芝孢子粉在肿瘤治疗中的作用. 中医健康养生, 4(1):79
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
程丽佳, 谢欣蓉, 杨明, 刘凤, 练心洁, 蒋福荣 , 2017. 灵芝提取物对提高小鼠机体免疫力作用研究. 成都大学学报, 36(4):361-368
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
国家药典委员会, 2000. 中华人民共和国药典. 北京: 化学工业出版社. 1 47
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
戴玉成, 曹云, 周丽伟, 吴声华 , 2013. 中国灵芝学名之管见. 菌物学报, 32(6):947-952
灵芝是最重要的药用真菌之一,在我国已有2,000多年的记载和利用历史。虽然早在一百多年前法国真菌学家Patouillard就有给中国的灵芝冠上Ganoderma lucidum这一学名,并沿用至今,但随着分子生物学技术的不断发展,人们认识到过去外国人的定名并不正确。实际上,G. lucidum 是1871年由William Curtis根据采自英国的标本描述的新物种。最近的研究表明,我国广泛分布和栽培的灵芝与产于欧洲的G. lucidum不同,是一个独立的种,其合法的拉丁学名应为G. lingzhi。鉴于“灵芝”这一名称在中国已使用2,000余年,故建议“G. lingzhi”的汉语学名为“灵芝”(俗称赤芝),而灵芝属的模式种G. lucidum的汉语学名改为“亮盖灵芝”(俗称白肉灵芝或白灵芝)。灵芝Ganoderma lingzhi广泛分布于东亚暖温带和亚热带,其主要形态特征是孔口表面新鲜时浅黄色至硫磺色、成熟时菌肉中有黑褐色区带、管口壁厚度为80–120μm。亮盖灵芝G. lucidum主要分布于欧洲和亚洲,在我国分布于东北、华北、华中和西南海拔较高地区,其孔口表面新鲜时白色至奶油色、成熟时菌肉中无黑褐色区带、管口壁厚度为40–80μm。四川灵芝G. sichuanense尽管其担孢子与灵芝G. lingzhi相似,但基于其模式标本ITS序列的系统发育研究表明,该种与灵芝不同,是个独立的种,且在广东也有发现。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
甘卓亭, 姚婷, 佘新松, 邹紫玲, 王思强, 唐敏, 韩燕峰 , 2019. 蝉虫草样品的分级萃取与化学成分分析. 菌物学报, 38(7):1149-1164
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
郭志峰, 宋彩瑜, 李超, 张丽霞 , 2010. 破壁灵芝孢子中生物碱和脂溶性成分GC/MS分析. 河北大学学报(自然科学版), 30(3):275-279
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
胡宗苗, 刘景楠, 周园里, 邓颖颖, 刘继平 , 2016. 灵芝孢子粉对乙醇诱导小鼠胃溃疡的保护作用. 陕西中医, 37(5):632-634
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
姜芳燕, 马军, 陈永敢, 陈光宙, 李珍, 王沛正, 王辉芳 , 2014. 灵芝活性成分的研究进展. 黑龙江农业科学, 8:137-142
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
廖逸茹, 江南, 罗霞 , 2019. 灵芝在呼吸道疾病中的运用及研究进展. 四川中医, 37(3):215-217
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
路莉文, 包尚松, 谭明慧, 李雪霜, 吕朦朦, 刘呈雄, 邓张双, 郭志勇, 邹坤 , 2018. 内生真菌Penicillium sp.生物碱类次级代谢产物研究. 三峡大学学报, 40(1):97-99
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
师文文, 吕攀, 徐庆强, 赵杰, 肖凯 , 2019. 油酸在黄曲霉毒素诱导肝细胞损伤中的保护作用. 中国油料作物学报, 41(2):267-274
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
宋灵云, 李苗苗, 于海玲 , 2017. 芥酸酰胺对小鼠的抗焦虑样作用. 沈阳药科大学学报, 34(4):333-337
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
宋玮, 钱群丽, 姜虹, 刘持典, 宋卫国 , 2019. UPLC-Q-TOF-MS分析灵芝孢子粉中三萜类化合物. 宁夏大学学报, 40(1):37-40
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
孙超, 胡鸢雷, 徐江, 罗红梅, 李春芳, 宋经元, 郭红卫, 陈士林 , 2013. 灵芝:一种研究天然药物合成的模式真菌. 中国科学:生命科学, 43(6):447-456
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
孙培龙, 陶文扬, 何晋浙 , 2018. 灵芝中三萜类化合物的研究进展. 食药用菌, 24(2):76-81
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
汤喜兰, 刘建勋, 李磊 , 2012. 中药有机酸类成分的药理作用及在心血管疾病的应用. 中国实验方剂学杂志, 18(5):243-246
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
谭贻, 唐传红, 冯杰, 冯娜, 吴莹莹, 鲍大鹏, 杨焱, 张劲松 , 2019. 灵芝三萜生物合成及调控研究进展. 食用菌学报, 26(3):125-140
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
王超, 俞云, 龙军, 喻斌, 蒋宝平, 许立 , 2016. 灵芝孢子油对血管生成作用的研究. 现代中药研究与实践, 30(6):31-33
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
王金艳, 王晨光, 张劲松, 朱丽娜, 刘艳芳, 周帅, 张忠, 唐庆九 , 2016. 灵芝孢子粉中核苷类成分分析. 菌物学报, 35(1):77-85
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
徐硕, 卢文玉 , 2019. 谷氨酸棒状杆菌异源合成萜类化合物的研究进展. 中国生物工程杂志, 39(6):91-96
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
闫征, 王宏旭, 刘莉莹, 杜国华, 陈若芸 , 2017. 灵芝三萜类化合物的体外抗肿瘤活性研究. 国际检验医学杂志, 38(5):633-634, 637
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
衣丹, 林学政, 沈继红, 刘发义, 梁晓芳 , 2011. 共轭亚油酸降血脂及抗动脉粥样硬化作用的研究. 现代生物医学进展, 11(7):1228-1230
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
赵敏, 喻凯, 豆新志, 党娟, 刘新颖, 郭敏 , 2012. 亚油酸及其甲酯对大鼠佐剂性关节炎的治疗作用. 华西药学杂志, 27(3):281-282
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
周亚杰, 王梓懿, 冯鹏 , 2018. 灵芝孢子粉多糖研究进展. 中草药, 49(21):5205-5209
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
邹海洋, 陈再洁, 郑建明 , 2010. GC-MS在中药研究中的应用. 现代商贸工业, 9:362-364
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |