红菇科可食真菌的若干分类问题

王向华

菌物学报 ›› 2020, Vol. 39 ›› Issue (9) : 1617-1639.

PDF(6422 KB)
中文  |  English
PDF(6422 KB)
菌物学报 ›› 2020, Vol. 39 ›› Issue (9) : 1617-1639. DOI: 10.13346/j.mycosystema.200209 CSTR: 32115.14.j.mycosystema.200209
综述

红菇科可食真菌的若干分类问题

作者信息 +

Taxonomic comments on edible species of Russulaceae

Author information +
文章历史 +

摘要

红菇科Russulaceae包含大量全球广泛采食的野生食用菌,同时也有一定数目的毒菌。该科特别是红菇属的分类是大型真菌分类的难点。近年来DNA数据大量应用于红菇科的分类,更新了属的界定和概念,发现了大量新物种,为食用菌和毒菌的识别和鉴定带来了可用的名称。然而,DNA证据并不总是与形态证据吻合,这又为食用菌和毒菌的识别和名称的使用带来了困扰和不便。本文针对乳菇属、多汁乳菇属和红菇属中的重要食用菌类群,回顾了近年来的分类研究进展,分析了研究背后的数据实情和存在的分类问题。认为:在食用菌和毒菌的确定上,依靠物种复合群共有的形态特征更具有可操作性;依据DNA序列进行的劈分式分类和依靠少数样品的特征及DNA序列上的少量差异发表新种的做法可能产生不便于使用的后果;在乳菇属和红菇属中,“BLAST相似度低的即为新种”的分类实践存在错误风险;充分结合历史资料和各个类群的特点,确定物种划分的阈值,才能有望解决红菇科真菌的分类问题。

Abstract

The family Russulaceae includes a large number of edible species collected and consumed worldwide and some poisonous ones. The family, especially the genus Russula is notoriously difficult in taxonomy. Application of DNA data to the taxonomic studies updates the limits and concepts of its constituent genera and uncovers an increasing number of new species. This brings available names for identification of edible and poisonous species, but simultaneously causes confusion and inconvenience when using the new and amended names due to discordance between molecular and morphological evidences. Focusing on several important edible groups of Russulaceae, this paper reviews the most recent progresses in the taxonomy of Russulaceae, analyzes the data supporting the studies and gives comments on the taxonomic issues. The author concludes that morphological approach is more feasible in identifying edible or poisonous species if shared characters within a species complex are fully understood. Splitting taxonomy using only DNA data and describing new species with insufficient sampling and few changes in sequence data may have unpractical taxonomic outcomes. In the taxonomic practice of Lactarius and Russula, “low similarity in BLAST equal to new species” has a risk of producing synonyms. To achieve a thoroughly resolved taxonomy, full reference to historical documents and setting appropriate cutoffs when delimitating species by respecting the personality of each group is needed.

关键词

内转录间隔区 / 系统发育分支 / 形态特征 / 地理分布 / 新物种

Key words

ITS / phylogenetic clades / morphological characters / geographical distribution / new species

引用本文

导出引用
王向华. 红菇科可食真菌的若干分类问题[J]. 菌物学报, 2020, 39(9): 1617-1639 https://doi.org/10.13346/j.mycosystema.200209
WANG Xiang-Hua. Taxonomic comments on edible species of Russulaceae[J]. Mycosystema, 2020, 39(9): 1617-1639 https://doi.org/10.13346/j.mycosystema.200209
柄锈菌科Pucciniaceae已知20属(有50个异名),约4 938种(Kirk et al. 2008),许多成员是经济植物的重要病原菌,能给农业生产造成重大损失(庄剑云等 1998)。在内蒙古锈菌物种多样性研究中,我们曾对该科的分类群作过系列报道(Liu et al. 2014,2016a,2016b;刘铁志等 2014,2015;刘铁志和侯振世 2015;Liu & Zhuang 2015,2016)。在此基础上,本文继续报道国内3个新记录种。

1 材料与方法

1.1 材料

4份研究标本均采自内蒙古自治区赤峰市,现存放于赤峰学院菌物标本室(CFSZ),其副份标本保存在中国科学院菌物标本馆(HMAS)。

1.2 方法

显微特征观察以乳酚油作浮载剂,每种菌的各种分类性状测量数据不少于30个,然后统计其变化幅度,根据观测数据对其进行描述和鉴定。
基因组DNA的提取采用E.Z.N.A. Fungal DNA Extraction Kit,购自美国Omega Bio-Tek公司。ITS序列PCR扩增引物采用Rust2inv(Aime 2006)和ITS4(White et al. 1990),反应条件:94℃预变性5min,94℃变性30s,50℃退火30s,72℃延伸30s,35个循环,72℃延伸10min,4℃保存,回收产物连接到pMD18-T Vector上,筛选阳性克隆,主要试剂均购自宝生物工程(大连)有限公司。序列测定由北京诺赛基因组研究中心有限公司完成,所得ITS序列上传至GenBank,并获登录号。采用MEGA7.0软件构建系统发育树,邻接法(Neighbor-joining)自展重复次数设置为1 000,所用序列见表1
表1 构建系统发育树所用真菌标本

Table 1 Fungal specimens used in the phylogenetic analyses

种名
Species
引证标本
Voucher
寄主
Host
国家
Country
登录号
GenBank accession No.
Puccinia albescens CFSZ 9055 Adoxa moschatellina 中国 China MF002126
Puccinia annularis INU_12573-2016 Teucrium chamaedrys subsp. chamaedrys 土耳其 Turkey KU872010
Puccinia argentata IMI 502182 Impatiens noli-tangere 捷克 Czech KC433402
Puccinia brachypodii HSZ0975 —— 美国 America GQ457303
Puccinia coronata 722 Rhamnus cathartica 瑞典 Sweden JX047499
Puccinia coronata var. avenae f. sp. avenae DAOM 240064 Avena sp. 加拿大 Canada HM057140
Puccinia crandallii DAOM 233707 Symphoricarpos albus 加拿大 Canada HQ317534
Puccinia durangensis DAOM 163064 Piptochaetium pringlei 美国 America HM131356
Puccinia drabae R209-16555 Draba incana 挪威 Norway EU014054
Puccinia drabae R210-17728 Draba glabella 丹麦 Denmark EU014056
Puccinia hordei JCP35 Hordeum vulgare 墨西哥 Mexico KT982691
Puccinia hordei PUR F17692 Vulpia myuros 希腊 Greece HQ317527
Puccinia graminis B294 —— 中国 China KC677573
Puccinia graminis IRAN 11086 F Poa trivialis 伊朗 Iran AY874147
Puccinia graminis f. sp. tritici R203 Hordeum vulgare 比利时 Belgium EU014046
Puccinia graminis f. sp. tritici T160 —— 塔吉克斯坦 Tajikistan JX424533
Puccinia graminis f. sp. tritici 80MN518-3 Triticum aestivum 美国 America DQ417376
Puccinia holcina IRAN 10196 F Lophochloa phleoides 伊朗 Iran AY956555
Puccinia holcina PRC 202 Holcus lanatus 美国 America DQ512999
Puccinia komarovii IMI 502177 Impatiens parviflora 波兰 Poland KC460243
Puccinia komarovii IMI 502181 Impatiens brachycentra 印度 India KC430763
Puccinia komarovii IMI 502239 Impatiens sp. 巴基斯坦 Pakistan KC460225
Puccinia komarovii IMI 398718 Impatiens glandulifera 印度 India KC460252
Puccinia marrubii INU_12568-2016 Marrubium globosum subsp. globosum 土耳其 Turkey KU872003
Puccinia poae-nemoralis DAOM 240189 Koeleria litvinowii 中国 China HM057155
Puccinia pseudostriiformis IRAN 11500 F Poa pratensis 伊朗 Iran AY956560
Puccinia recondita PUR 25211 Elymus submuticus 加拿大 Canada JX533562
Puccinia recondita PUR 55737 Agropyron trachycaulum 美国 America JX533563
Puccinia recondita PUR 24872 Elymus alaskanus 加拿大 Canada JX533549
Puccinia salviae INU_12578-2016 Salvia sp. 土耳其 Turkey KU872006
Puccinia sp. AB-2012 703 Berberis sp. 瑞典 Sweden JX047493
Puccinia stipina CFSZ 9492 Stipa sareptana var. krylovii 中国 China MF002134
Puccinia striiformis HSZ1834 —— 美国 America GQ457306
Puccinia striiformis JCP58 Hordeum vulgare 墨西哥 Mexico KT982697
Puccinia striiformoides PUR N5383 Dactylis glomerata 智利 Chile HM057129
Puccinia striiformoides PAK-7 —— 巴基斯坦 Pakistan KM391670
Puccinia symphoricarpi BPI 879286 Symphoricarpos albus 美国 America GU058006
Puccinia trebouxi Iran 11638 Melica jacquemontii 伊朗 Iran EU770611
Uromyces coronatus DAOM 32991 Zizania latifolia 日本 Japan HM131365
Uromyces dactylidis PRC:692 Dactylis glomerata 捷克 Czech KM667950
Uromyces dactylidis DAOM 216236 Dactylis glomerata 匈牙利 Hungary HM057148
Uromyces durus IBAR:11149 Allium macrostemon 日本 Japan LC203758
Uromyces gageae CFSZ 9011 Lloydia triflora 中国 China KY996748
注:表中粗体字表示本文报道的中国柄锈菌科3个新记录种
Note: Boldface letters represent three new records of Pucciniaceae from China reported in this paper.

2 结果与分析

2.1 分类

白柄锈菌 图1,图2
图1 白柄锈菌 Puccinia albescens Plowr.(CFSZ 9055)
A-C:五福花叶片上的夏孢子堆和冬孢子堆,a:夏孢子堆;b:冬孢子堆;D,E:夏孢子;F:冬孢子. 标尺=20μm

Fig. 1 Puccinia albescens Plowr. (CFSZ 9055).
A-C: Uredinia and telia on leaves of Adoxa moschatellina, a: Uredinia; b: Telia; D, E: Urediniospores; F: Teliospores. Scale bars=20μm.

Full size|PPT slide

图2 白柄锈菌 Puccinia albescens Plowr.(CFSZ 9055)
A:夏孢子;B:冬孢子

Fig. 2 Puccinia albescens Plowr. (CFSZ 9055).
A: Urediniospores; B: Teliospores.

Full size|PPT slide

Puccinia albescens Plowr., Monograph Brit. Ured.: 153, 1889.
性孢子器和春孢子器在引证标本上未见。
夏孢子堆叶下面生,散生或小群聚生,圆形,直径0.1-0.2mm,被表皮长期覆盖,褐色;夏孢子椭圆形或近球形,20-27.5(-31)×17.5-22.5(-25)μm,壁1.5-2.5μm厚,有细刺,黄褐色,芽孔2个,腰生或近腰生。
冬孢子堆叶下面生,散生或小群聚生,有时散布于整个叶面,圆形,直径0.1-0.8mm,长期被寄主表皮覆盖或晚期裸露,粉状,黑褐色,周围有破裂的寄主表皮围绕;冬孢子椭圆形、纺锤形或卵形,(25-)30-45×15-22.5(-25)μm,顶端圆或渐尖,基部渐狭,隔膜处不缢缩或稍缢缩,壁1.5-2.5μm厚,均匀,肉桂褐色至栗褐色,光滑,上细胞芽孔顶生,偶尔侧生,下细胞芽孔近隔膜,个别稍偏下,有明显的乳头状孔帽,无色或淡黄色;柄无色,短,偶尔长达50μm,易断或脱落。1室冬孢子常见。
(0),(Ⅰ),Ⅱ,Ⅲ
五福花 Adoxa moschatellina L.(五福花科Adoxaceae):内蒙古赤峰市宁城县黑里河国家级自然保护区四道沟,2016年7月18日,刘铁志,CFSZ 9055(=HMAS 246780)(GenBank No. MF002126)、CFSZ 9058。
分布:欧洲(Grove 1913;Gäumann 1959;Wilson & Henderson 1966);俄罗斯西伯利亚和远东地区(Ulʼyanishchev 1978;Azbukina 2005),中国内蒙古。
讨论:本种是单主全孢型(automacrocyclic)的种,其生活史与冬孢型(microcyclic)的五福花柄锈菌 Puccinia adoxae R. Hedw.不同。其冬孢子堆散生,而 P. adoxae的冬孢子堆在或多或少有些畸形的植物体上形成大的集群(Grove 1913;Wilson & Henderson 1966);两者的冬孢子形态差异不大,但本种的略显宽大。
狼针草柄锈菌 图3,图4
图3 狼针草柄锈菌 Puccinia stipina Tranzschel(CFSZ 9492)
A,B:西北针茅叶片上的夏孢子堆和冬孢子堆,a:夏孢子堆,b:冬孢子堆;C,D:夏孢子;E:冬孢子. 标尺=20μm

Fig. 3 Puccinia stipina Tranzschel (CFSZ 9492).
A, B: Uredinia and telia on leaves of Stipa sareptana var. krylovii, a: Uredinia, b: Telia; C, D: Urediniospores; E: Teliospores. Scale bars=20μm.

Full size|PPT slide

图4 狼针草柄锈菌 Puccinia stipina Tranzschel(CFSZ 9492)
A:夏孢子;B:冬孢子

Fig. 4 Puccinia stipina Tranzschel (CFSZ 9492).
A: Urediniospores; B: Teliospores.

Full size|PPT slide

Puccinia stipina Tranzschel, Krypt.-Fl. Brandenburg 5a: 477, 1913.
Puccinia stipae Arthur var. stipina (Tranzschel) H.C. Greene & Cummins, Mycologia 50(1): 21, 1958.
Aecidium thymi Fuckel, Fungi Rhenani Exsic., Suppl., Fasc. 7(nos 2101-2200): no. 2113, 1868.
夏孢子堆叶上面生,散生或聚生,椭圆形或长椭圆形,长0.2-0.8mm,裸露,粉状,黄褐色;夏孢子近球形、椭圆形或倒卵形,20-25(-30)×20- 22.5(-25)μm,淡黄色至黄褐色,壁1.5-2.5μm厚,具细刺,芽孔6-8(-10)个,散生。
冬孢子堆叶上面生,散生或聚生,椭圆形或长条形,长0.2-1mm,有时互相愈合达5mm,裸露,粉状,黑褐色;冬孢子宽椭圆形或棍棒形,(30-)40-55(-65)×(15-)20-25(-30)μm,顶端圆、锥形或平截,基部圆或狭细,隔膜处不缢缩或稍缢缩,肉桂褐色至栗褐色,侧壁1.5-3μm厚,顶壁5-11μm厚,光滑,上细胞芽孔顶生,下细胞芽孔近隔膜;柄无色,长达150μm,不脱落;1室冬孢子常见。
Ⅱ,Ⅲ
西北针茅(克氏针茅) Stipa sareptana Becker var. krylovii (Roshev.) P.C. Kuo & Y.H. Sun [≡ Stipa krylovii Roshev.](禾本科Poaceae):内蒙古赤峰市巴林右旗赛罕乌拉国家级自然保护区荣升,2016年,9月10日,刘铁志,宋泽林,CFSZ 9492(=HMAS 246779)(GenBank No. MF002134-MF002137)。
分布:瑞士,法国,俄罗斯西伯利亚和远东地区(Gäumann 1959;Cummins 1971;Ulʼyanishchev 1978;Azbukina 2005),中国内蒙古。
讨论:Greene & Cummins(1958)和Cummins(1971)把本种改级为 Puccinia stipae Arthur的一个变种,即 P. stipae Arthur var. stipina (Tranzschel) H.C. Greene & Cummins,并推测它在中国有分布。戴芳澜(1979)根据文献记录了该变种,将阿尔泰紫菀 Aster altaica Willd.(青海)和可爱黄芩 Scutellaria amoena Wright(四川)作为此菌的春孢子阶段寄主,但因未做接种试验,不能确定;戴芳澜(1979)记载的夏孢子和冬孢子阶段寄主有芨芨草 Achnatherum splendens (Trin.) Nevski(河北,陕西,新疆)、短花针茅 Stipa breviflora Griseb.(河北)和针茅属 Stipa sp.(山西)。王云章和魏淑霞(1983)复查了原标本,认为芨芨草 Achnatherum splendens和短花针茅 Stipa breviflora上的菌不是 P. stipina Tranzschel,而是针茅柄锈菌 Puccinia stipae Arthur。王云章和魏淑霞(1983)不同意将 P. stipina作为 P. stipae的一个变种,因为 P. stipina的春孢子阶段生于唇形科植物(Cummins 1971;Ulʼyanishchev 1978),而 P. stipae的春孢子阶段生于菊科植物(Cummins 1971)。由于无可靠标本为据,在《中国真菌志 第十卷 锈菌目(一)》没有记载 P. stipina庄剑云等 1998)。此报道首次确认本种在国内确有分布。西北针茅 Stipa sareptana var. krylovii是本种新寄主(Gäumann 1959;Cummins 1971;Ulʼyanishchev 1978;Azbukina 2005)。
顶冰花单胞锈菌 图5,图6
图5 顶冰花单胞锈菌 Uromyces gageae Beck(CFSZ 9011)
A,B:三花洼瓣花叶片上的冬孢子堆;C,D:冬孢子. 标尺=20μm

Fig. 5 Uromyces gageae Beck (CFSZ 9011).
A, B: Telia on leaves of Lloydia triflora; C, D: Teliospores. Scale bars=20μm.

Full size|PPT slide

图6 顶冰花单胞锈菌 Uromyces gageae Beck(CFSZ 9011)的冬孢子

Fig. 6 Teliospores of Uromyces gageae Beck (CFSZ 9011).

Full size|PPT slide

Uromyces gageae Beck, Verh. Zool.-Bot. Ges. Wien 30: 26, 1880.
冬孢子堆生于叶下面,圆形或椭圆形,直径0.2-0.5mm,散生,被寄主表皮覆盖,晚期裸露,粉状,暗褐色;冬孢子椭圆形、卵形或近球形,25-40×17.5-22.5μm,顶端圆或锥形,有透明的乳头状突起,可达5μm高,基部圆或略狭,壁1-2.5μm厚,表面光滑,黄褐色至栗褐色;柄无色,短,少数长达35μm,易脱落。
三花洼瓣花(三花顶冰花) Lloydia triflora (Ledeb.) Baker [≡ Gagea triflora (Ledeb.) Schult. & Schult. f.](百合科Liliaceae):赤峰市巴林右旗赛罕乌拉国家级自然保护区乌兰坝,刘铁志,孟海龙,鲍清泉,CFSZ 9011(GenBank No. KY 996747-KY 996750)。
分布:欧洲(Sydow & Sydow 1910;Grove 1913;Gäumann 1959;Wilson & Henderson 1966),高加索地区(Kuprevich & Ulʼyanishchev 1975),俄罗斯远东地区(Azbukina 2005),日本(Hiratsuka et al. 1992),中国内蒙古。

2.2 分子系统发育分析

在GenBank里未搜索到本文提及的3个种的ITS序列数据。在系统发育树(图7)中可见,白柄锈菌 Puccinia albescens与产自捷克、波兰、印度和巴基斯坦寄生在 Impatiens spp.(Balsaminaceae)上的 Puccinia argentata (Schultz) G. Winter(GenBank No. KC433402)和 P. komarovii Tranzschel(GenBank No. KC460243,KC430763,KC460225,KC460252)序列聚为一强烈支持的分支(100%)。三者的夏孢子及冬孢子形态相近,大小相当,但夏孢子芽孔数目和着生位置明显不同: P. albescens芽孔2个,腰生或近腰生; P. argentata芽孔4-7个,散生; P. komarovii芽孔1个,顶生或近顶生(庄剑云等 2003)。狼针草柄锈菌 Puccinia stipina与产自土耳其寄生在 Marrubium globosum subsp. globosum(Lamiaceae)上的 Puccinia marrubii Kabakt. et al.(GenBank No. KU872003)序列聚为一支,自展值仅为50%。虽然二者的冬孢子形态、大小和柄的长度都很相近,但其寄主科不同,生活史类型也不同,前者为转主全孢型种(Cummins 1971;Ulʼyanishchev 1978),后者仅发现了冬孢子,为短生活史型种(Kabaktepe et al. 2016)。顶冰花单胞锈菌 Uromyces gageae则未见明显支持的分支。
图7 基于rDNA-ITS序列构建的柄锈科系统发育树
括号内为引证标本编号,分支节点处的数字表示自展值,标尺表示每个核苷酸位点上的0.02替换值

Fig. 7 Phylogenetic tree of Pucciniaceae based on partial rDNA-ITS sequences. The numbers in parentheses represent voucher specimens.
The numbers in branch points denote bootstrap values. The scale bar represents 0.02 substitutions per nucleotide position.

Full size|PPT slide

参考文献

1
Adamčik S, Looney B, Cabon M, Jancovicova S, Adamcikova K , et al., 2019. The quest for a globally comprehensible Russula language. Fungal Diversity, 99:369-449
2
Arora D , 1986. Mushrooms demystified. Ten Speed Press, Berkeley. 1-959
3
Boa E , 2004. Wild edible fungi a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome. 1-147
4
Buyck B , 1990. Nouveaux taxons infragénériques dans le genre Russula Persoon en Afrique centrale. Bulletin du Jardin Botanique National Belgique, 60:191-211
5
Buyck B , 2008. The edible mushrooms of Madagascar: an evolving enigma. Economic Botany, 62(3):509-520
6
Buyck B, Hofstetter V, Verbeken A, Walleyn R , 2010. Proposal to conserve Lactarius nom. cons. (Basidiomycota) with a conserved type. Taxon, 59:295-296
7
Buyck B, Hofstetter V, Eberhardt U, Verbeken A, Kauff F , 2008. Walking the thin line between Russula and Lactarius: the dilemma of Russula subsect. Ochricompactae. Fungal Diversity, 28:15-40
8
Buyck B, Wang XH, Adamčíková K, Cabon M, Jančovičová S, Hofstetter V, Adamčík S , 2020. One step closer to unravelling the origin of Russula: subgenus Glutinosae subg. nov. Mycosphere, 11(1):285-304
9
Buyck B, Adamčik S , 2013. Type studies in Russula subsection Lactarioideae from North America and a tentative key to North American species. Cryptogamie Mycologie, 34(3):259-279
10
Buyck B, Zoller S, Hofstetter V , 2018. Walking the thin line… ten years later: the dilemma of above versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity, 89:267-292
11
Caboň M, Jančovičová S, Trendel JM, Pierre‑Arthur M, Hampe F, Kolařík M, Verbeken A, Adamčík S , 2018. Blum versus Romagnesi: testing possible synonymies of some European russulas (Russulaceae, Basidiomycota). Plant Systematics and Evolution, 304:747-756
12
Chen YL, Liu M, Zhang LP, Su MS, Wu F , 2019. A new record species of Lactarius from China - Lactarius kesiyae. Journal of Henan Agriculatural Sciences, 48(1):105-109, 152 (in Chinese)
13
Chen ZH, Yang ZL, Bau T, Li TH , 2016. Poisonous mushrooms: recognition and poisoning treatment. Science Press, Beijing. 1-308(in Chinese)
14
Chiu WF , 1945. The Russulaceae of Yunnan. Lloydia, 8:31-59
15
Das K, van de Putte K, Buyck B , 2011. New and interesting Russula from Sikkim Himalaya (India). Cryptogamie Mycologie, 31(4):373-387
16
de Crop E, Nuytinck J, Van de Putte K, Wisitrassameewong K, Hackel J, Stubbe D, Hyde KD, Roy M, Halling RE, Moreau PA, Eberhardt U, Verbeken A , 2017. A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus. Persoonia, 38:58-80
Infrageneric relations of the genetically diverse milkcap genus Lactifluus (Russulales, Basidiomycota) are poorly known. Currently used classification systems still largely reflect the traditional, mainly morphological, characters used for infrageneric delimitations of milkcaps. Increased sampling, combined with small-scale molecular studies, show that this genus is underexplored and in need of revision. For this study, we assembled an extensive dataset of the genus Lactifluus, comprising 80 % of all known species and 30 % of the type collections. To unravel the infrageneric relationships within this genus, we combined a multi-gene molecular phylogeny, based on nuclear ITS, LSU, RPB2 and RPB1, with a morphological study, focussing on five important characteristics (fruit body type, presence of a secondary velum, colour reaction of the latex/context, pileipellis type and presence of true cystidia). Lactifluus comprises four supported subgenera, each containing several supported clades. With extensive sampling, ten new clades and at least 17 new species were discovered, which highlight the high diversity in this genus. The traditional infrageneric classification is only partly maintained and nomenclatural changes are proposed. Our morphological study shows that the five featured characteristics are important at different evolutionary levels, but further characteristics need to be studied to find morphological support for each clade. This study paves the way for a more detailed investigation of biogeographical history and character evolution within Lactifluus.
17
de Crop E, Hampe F, Wisitrassameewong KF, Stubbe D, Nuytinck J, Verbeken A , 2018. Novel diversity in Lactifluus section Gerardii from Asia: five new species with pleurotoid or small agaricoid basidiocarps. Mycologia, 110(5):962-984
18
Elliott TF, Trappe JM , 2018. A worldwide nomenclature revision of sequestrate Russula species. Fungal Systematics and Evolution, 1:229-242
Before the application of molecular techniques, evolutionary relationships between sequestrate genera and their epigeous counterparts in the Russulaceae were unclear. Based on overwhelming evidence now available, personal observations, and consideration of the International Code for Nomenclature of Algae, Fungi and Plants, we combine the overlapping sequestrate generic names Bucholtzia, Cystangium, Elasmomyces, Gymnomyces, Macowanites, and Martellia with the agaricoid genus Russula. This nomenclatural action follows precedents set by earlier mycologists and continues an effort to create clarity in our understanding of the evolutionary affiliations among sequestrate fungi - particularly the Russulaceae. We also provide the first comprehensive list of described sequestrate species of Russula.
19
Hall I, Stephenson SL, Buchanan PK, Wang Y, Cole ALJ , 2003. Edible and poisonous mushrooms of the world. New Zealand Institute for Crop & Food Research Limited, Christchurch. 1-371
20
Han Y, Liang CZ, Liu PG, Nuytinck J, Wang XH , 2019. Lactarius guangdongensis sp. nov. (Russulaceae, Russulales), a species of Lactarius sect. Deliciosi growing with a vulnerable five-needle pine, Pinus kwangtungensis. Phytotaxa, 393(3):278-286
21
Härkönen M, Niemelä T, Mwasumbi L , 2003. Tanzanian mushrooms. Botanical Museum, Finnish Museum of Natural History, Helsinki. 1-200
22
Hesler LR, Smith AH , 1979. North American species of Lactarius. University of Michigan Press, Ann Arbor. 1-841
23
Hongo T , 1954. Two new Agarics from Omi. Acta Phytotaxonomica Geobotanica, 15(4):102-104
24
Jiang XM, Li YK, Liang JF, Wu JR , 2017. Russula brunneovinacea sp. nov., from northeastern China. Mycotaxon, 132:789-797
25
Kauffman CH , 1918. The Agaricaceae of Michigan, Vol. I, II. Michigan Geological and Biological Survey, Publ. 26, Biol. Ser. 5. Wynkoop Hallenbeck Crawford Co., State Printers, Lansing. 1-924
26
Kawamura S , 1911. On a poisonous fungus, Lactarius torminosus (Schaeff.) Fr. which causes inflammation of human limbs. The Botanical Magazine, 25(291):104-115
27
Khatua S, Dutta AK, Acharya K , 2015. Prospecting Russula senecis: a delicacy among the tribes of West Bengal. Peer J, 3:19
28
Knudsen H, Borgen T , 1982. Russulaceae in Greenland. In: Arctic and Alpine Mycology 1. University of Washington Press, Seattle and London. 1-559
29
Lee H, Park MS, Jung PE, Eimes JA, Seok SJ, Lim YW , 2017. Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea. Mycoscience, 58(5):351-360
30
Lee H, Wisitrassameewong K, Park MS, Verbeken A, Eimes J, Lim YW , 2019. Taxonomic revision of the genus Lactarius (Russulales, Basidiomycota) in Korea. Fungal Diversity, 95:275-335
31
Li F, Deng QL , 2018. Three new species of Russula from South China. Mycological Progress, 17:1305-1321
32
Li GJ, Deng CY, Shi LY, Wang J, Meng QF, Li SM , 2020a. Three new species of Russula subsect. Lactarioideae from China. Mycosystema, 39:618-636
33
Li GJ, Li SF, Wen HA , 2010. The Russula species resource and its economic values of China. Acta Edulis Fungi, 2010 ( Suppl.):155-160 (in Chinese)
34
Li GJ, Li SF, Zhao D, Wen HA , 2015. Recent research progress of Russula (Russulales, Agaricomycetes): a review. Mycosystema, 34(5):821-848 (in Chinese)
35
Li GJ, Zhao RL, Zhang CL, Lin FC , 2019. A preliminary DNA barcode selection for the genus Russula (Russulales, Basidiomycota). Mycology, 10(2):61-74
Russula is a worldwid genus which has a high species diversity . Aiming accurate and rapid species identification, candidate genes nLSU (28S), ITS, tef-1alpha, mtSSU, rpb1, and rpb2, were analysed as potential DNA barcodes. This analysis included 433 sequences from 38 well-circumscribed Russula species of eight subgenera. Two vital standards were analysed for success species identification using DNA barcodes, specifically inter- and intra-specific variations together with the success rates of PCR amplification and sequencing. Although the gap between inter- and intra-specific variations was narrow, ITS met the qualification standards for a target DNA barcode. Overlapping inter- and intra-specific pairwise distances were observed in nLSU, tef-1alpha, mtSSU, and rpb2. The success rates of PCR amplification and sequencing in mtSSU and rpb1 were lower than those of others. Gene combinations were also investigated for resolution of species recognition. ITS-rpb2 was suggested as the likely target DNA barcode for Russula, owing to the two viatal standards above. Since nLSU has the lowest minimum of inter-specific variation, and tef-1alpha has the highest overlap between intra- and inter-species variations among the candidate genes, they are disqualified from the selection for DNA barcode of Russula.
36
Li HJ, Zhang HS, Zhang YZ, Zhang KP, Zhou J, Yin Y, Jiang SF, Ma PB, He Q, Zhang YT, Wen K, Yuan Y, Lang N, Lu JJ, Sun CY , 2020b. Mushroom poisoning outbreaks — China, 2019. China CDC Weekly, 2(2):19-27
37
Li MC, Liang JF, Li YC, Feng B, Yang ZL, James TY, Xu JP , 2010. Genetic diversity of dahongjun, the commercially important “big red mushroom” from southern China. PLoS One, 5(5):10684
38
Liu JK, Hyde KD, Gareth JEB, Ariyawansa HA, Bhat DJ , et al., 2015. Fungal diversity notes 1-110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity, 72(1):1-197
39
Looney BP, Ryberg M, Hampe F, Sanchez-Garcia M, Matheny PB , 2016. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology, 25(2):630-647
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.
40
Moser M , 1983. Keys to agarics and boleti. Roger Phillips, London. 1-535
41
Nuytinck J, Verbeken A , 2005. Morphology and taxonomy of the European species in Lactarius sect. Deliciosi (Russulales). Mycotaxon, 92:125-168
42
Nuytinck J, Verbeken A, Saar I, Lambert H, Berube J, Voitk A , 2017. Lactarius splendens, a second species with white latex in Lactarius section Deliciosi. Botany, 95:859-863
43
Nuytinck J , 2004. Lactarius section Deliciosi (Russulales, Basidiomycota) and its ectomycorrhiza: a morphological and molecular approach. PhD Dissertation, Ghent University. 1-257
44
Nuytinck J, Verbeken A, Delarue S, Walleyn R , 2004. Systematics of European sequestrate lactarioid Russulaceae with spiny spore ornamentation. Belgian Journal of Botany, 136(2):145-153
45
Nuytinck J, Verbeken A, Miller SL , 2007. Worldwide phylogeny of Lactarius section Deliciosi inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 99:820-832
A phylogenetic analysis of Lactarius sect. Deliciosi was performed based on collections of all known species. Several samples of each species were included, originating from a wide geographic range. The two DNA regions we used (ITS and a part of the gene encoding glyceraldehyde-3-phosphate dehydrogenase) showed an incongruent phylogenetic signal. Much attention was paid to carefully observed macro- and micromorphological characters to draw taxonomic conclusions. We currently accept 38 taxa (31 species and seven varieties) in Lactarius sect. Deliciosi worldwide; four species are new to science. More sampling is needed to resolve the status of the North American varieties. Our knowledge of the Asian species in this section remains fragmentary. The monophyly of the section and its position within Lactarius subgenus Piperites, as proposed in recent morphology-based classification schemes, is confirmed. The intrasectional relationships however do not coincide with the color of the latex (as previously supposed). Intercontinental conspecificity is low in general. The name L. deliciosus is wrongfully applied in North and Central America and only two species seem to occur in both Asia and Europe.
46
Nuytinck J, Ammirati JF , 2014. A new species of Lactarius sect. Deliciosi (Russulales, Basidiomycota) from western North America. Botany, 92:767-774
Although Lactarius sect. Deliciosi (Fr.) Redeuilh, Verbeken & Walleyn (syn. Lactarius sect. Dapetes) is a readily identifiable group in the field, it is exceedingly difficult to correctly identify species with orange to reddish orange latex. A lack of careful study of these species in North America in general, and the Pacific Northwest more specifically, makes species identification often impossible. One common undescribed Pacific Northwest species, which begins fruiting rather early in the season, is described here as Lactarius aestivus sp. nov. It is found in conifer forests dominated by Abies Mill. and Tsuga Carriere, and is characterized by bright orange latex and zonate, bright to pale orange pileus that only rarely stains greenish. A phylogenetic analysis based on ITS sequences supports the species delimitation.
47
Park MS, Lee H, Oh SY, Jung PE, Seok SJ, Fong JJ, Lim YW , 2014. Species delimitation of three species within the Russula subgenus Compacta in Korea: R. eccentrica, R. nigricans, and R. subnigricans. Journal of Microbiology, 52(8):631-638
Distinguishing individual Russula species can be very difficult due to extensive phenotypic plasticity and obscure morphological and anatomical discontinuities. In this study, we use the internal transcribed spacer (ITS) and 28S nuclear ribosomal large subunit (LSU) markers to identify and study the genetic diversity of species in the Russula subgenus Compacta in Korea. We focus on two morphologically similar species that are often misidentified for each other: R. nigricans and R. subnigricans. Based on molecular phylogenetic analyses, we identify three subgroups of R. nigricans, with two from Asia and one from Europe/North America. Surprisingly, we find Korean R subnigricans are more closely related to R. eccentrica from North America than the type specimen of R. subnigricans from Japan. These molecular data, along with habitat data, reveal that Korean R. subnigricans had previously been misdassified and should now be recognized as R. eccentrica. Both ITS and LSU exhibit high interspecific and low intraspecific variation for R. eccentrica, R. nigricans, and R. subnigricans. These markers provide enough resolutional power to differentiate these species and uncover phylogeographic structure, and will be powerful tools for future ecological studies of Russula.
48
Redeuilh G, Verbeken A, Walleyn R , 2001. Étude nomenclaturale des taxons infrageneriques dans le genre Lactarius (Basidiomycota, Russulaceae). Mycotaxon, 77:127-143
49
Roussel HFA , 1806. Flore du Calvados et terrains adjacents, composee suivant la methode de Jussieu. L. -[J]. Poisson, Caen. 1-372
50
Shaffer R , 1962. The subsection Compactae of Russula. Brittonia, 14(3):254-284
51
Shimono Y, Hiroi M, Takamatsu S , 2014. The phylogeny of Russula section Compactae inferred from the nucleotide sequence of the rDNA large subunit and ITS regions. Bulletin Graduate School of Bioresources, Mie University, 40:65-75
52
Singer R , 1986. The Agaricales in modern taxonomy. 4th ed. Koeltz Scientific Books, Koenigstein. 1-981
53
Song Y, Buyck B, Li JW, Yuan F, Zhang ZW, Qiu LH , 2018. Two novel and a forgotten Russula species in sect. Ingratae (Russulales) from Dinghushan Biosphere Reserve in southern China. Cryptogamie Mycologie, 39(3):341-357
54
Stubbe D, Nuytinck J, Verbeken A , 2010. Critical assessment of the Lactarius gerardii species complex (Russulales). Fungal Biology, 114(2-3):271-283
This paper investigates species delimitation within the Lactarius gerardii species complex and explores its taxonomic and geographical extent. A combined molecular phylogeny based on ITS, LSU and rpb2 gene sequences is constructed and morphological characters are evaluated. While L. gerardii was originally described from North America, it has later been reported from all over Asia. Therefore a worldwide sampling range was aimed at, including species exhibiting morphological affinities with L. gerardii. The phylogenetic analyses indicate that intercontinental conspecificity in L. gerardii is absent. Thirty strongly supported clades are retrieved of which 18 are morphologically identifiable species. The group is elevated to Lactarius subg. Gerardii stat. nov. It includes, apart from L. gerardii s.l., L. atrovelutinus, L. bicolor, L. ochrogalactus, L. petersenii, L. reticulatovenosus, L. sepiaceus, L. subgerardii and L. wirrabara, as well as the pleurotoid L. uyedae. The paraphyletic nature of the genus Lactarius is confirmed. Lactarius subg. Gerardii appears not affiliated with L. subg. Plinthogalus and this can be substantiated morphologically. No representatives are known from Europe, Africa or South America. The high frequency of intercontinental sister relationships observed between America, Asia and the Australian region, suggests multiple migration and speciation events have occurred across continents.
55
Stubbe D, Wang XH, Verbeken A , 2012. New combinations in Lactifluus. 2. L. subgenus Gerardii. Mycotaxon, 119:483-485
In this second of a series of three papers, new combinations in the genus Lactifluus are proposed. This paper treats Lactarius subg. Gerardii (proposed here as new combination in Lactifluus). In this subgenus 17 combinations at species level are proposed.
56
Tibpromma S, Kevin D, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK , et al., 2017. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 83:1-261
57
van de Putte K, Nuytinck J, Das K, Verbeken A , 2012. Exposing hidden diversity by concordant genealogies and morphology-a study of the Lactifluus volemus (Russulales) species complex in Sikkim Himalaya (India). Fungal Diversity, 55(1):171-194
Although Sikkim belongs to one of the Global Biodiversity Hotspots, little is known about its ectomycorrhizal fungi, and even less about the main genera of Russulales, i.e. Lactarius, Lactifluus, Multifurca and Russula. Combining a multilocus genealogical and morphological study, we aimed to document the diversity within Lactifluus volemus sensu lato of Sikkim Himalaya. We compared nuclear ITS and LSU rDNA, nuclear rpb1 and rpb2 protein-coding, and mitochondrial atp6 protein-coding genealogies to determine species boundaries. Interspecific relationships were inferred from the combined dataset. Bayesian and maximum likelihood single-locus genealogies are concordant and support recognition of six species. Three of these could be identified by unique morphological characteristics and are described as new species: L. dissitus, L. leptomerus and L. versiformis.
58
van de Putte K, Nuytinck J, Stubbe D, Le HT, Verbeken A , 2010. Lactarius volemus sensu lato (Russulales) from northern Thailand: morphological and phylogenetic species concepts explored. Fungal Diversity, 45:99-130
Lactarius volemus (Fr.: Fr.) Fr. is a well known and morphologically easily recognizable milkcap of the Northern hemisphere, forming ectomycorrhiza with both deciduous and coniferous trees. It was originally described from Europe, but is also reported in other continents. Although it is characterized by several unique macro- and micromorphological features, substantial variation in colour, lamellae spacing and changing and staining of the latex has been recorded and it is therefore considered as a putatively unresolved species complex. This study explores the concordance between morphological and phylogenetic species concepts within L. volemus sensu lato of northern Thailand, combining a critical morphological scrutiny with a multiple gene genealogy based on LSU, ITS and rpb2 nuclear sequences. Twelve strongly supported monophyletic clades and six terminal branches are discernable in all phylogenetic trees and represent 18 phylogenetic species. Six of the monophyletic clades can be morphologically distinguished and are described as new species: L. acicularis, L. crocatus, L. distantifolius, L. longipilus, L. pinguis and L. vitellinus. Five other clades also show some morphological differences, but these are too subtle and do not allow for a clear-cut species delimitation without the corroboration of molecular data. Lactarius volemus sensu lato of northern Thailand is therefore still considered as a partially cryptic species complex. Pleurolamprocystidia, pileipellis hairs and to a lesser degree also pileus colour are important diagnostic characteristics. Spore morphology, latex discoloration and pileus surface texture are less useful as diagnostic features. Whether this rich diversity is the result of in situ Pleistocene survival or post-glacial expansion and subsequent radiation, has yet to be revealed.
59
van de Putte K, Nuytinck J, de Crop E, Verbeken A , 2016. Lactifluus volemus in Europe: three species in one - revealed by a multilocus genealogical approach, Bayesian species delimitation and morphology. Fungal Biology, 120:1-25
This study provides morphological and molecular evidence (from nuclear ITS, LSU, and rpb2 DNA sequences) for three previously unrecognized species within the morphospecies Lactifluus volemus from Europe. Phylogenetic species are supported by both a multi-locus tree-based method and Bayesian species delimitation. Lactifluus volemus and Lactifluus oedematopus are provided with a new description, and a third species, Lactifluus subvolemus, is described as new to science. Lactifluus oedematopus can be easily recognized by its short pileipellis hairs. Both L. volemus and L. subvolemus have longer pileipellis hairs and can only be distinguished from each other based on cap colour. Intermediary colour forms, however, occur as well, and cannot be identified as either L. volemus or L. subvolemus without molecular data. Revealing that L. volemus--already considered extinct in the Netherlands and the Belgian Flemish region, and declining in other European countries--is actually a complex of three species that are even more vulnerable to extinction, this study emphasizes the fundamental role of taxonomy in species conservation.
60
Verbeken A, Nuytinck J , 2013. Not every milkcap is a Lactarius. Scripta Botanica Belgica, 51:162-168
61
Verbeken A, Walleyn R , 1999. Studies in tropical African Lactarius species 7. A synopsis of the section Edules and a review on the edible species. Belgian Journal of Botany, 132(2):175-184
62
Verbeken A, Walleyn R , 2012. Monograph of Lactarius in tropical Africa. Fungus flora of tropical Africa. Vol. 2. National Botanic Garden of Belgium, Brussels. 1-161
63
Verbeken A, Nuytinck J, Buyck B , 2012a. New combinations in Lactifluus. 1. L. subgenera Edules, Lactariopsis, and Russulopsis. Mycotaxon, 118:447-453
64
Verbeken A, Bougher NL, Halling R , 2002. Lactarius (Basidiomycota, Russulaceae) in Papua New Guinea. 3. Two new Lactarius species in subgenus Plinthogali. Australian Systematic Botany, 15(6):765-771
65
Wang J, Buyck B, Wang XH, Bau T , 2019. Visiting Russula (Russulaceae, Russulales) with samples from southwestern China finds one new subsection of R. subg. Heterophyllidia with two new species. Mycological Progress, 18:771-784
66
Wang XH , 2007. Type studies on the Lactarius species published from China. Mycologia, 99(2):253-268
摘要
Thirteen species and one variety of the genus Lactarius (Russulaceae, Russulales) have been published from China. Since the original descriptions and illustrations are often poor, it is difficult to understand the concepts of these taxa. Therefore, the type specimens of all these taxa were traced, reviewed and (or) re-examined by employing modern taxonomic methods. The type collections of L. atrosquamulosus and L. omeiensis could not be found. The type collection of L. minimus var. macrosporus was found to consist of mixed material belonging to two different species and a lectotype, which belongs to Lactarius subgen. Russularia, sect. Olentes was designated. Lactarius squamulosus turned out to be a synonym of L. gracilis and L. wangii was synonymized here with L. volemus. Except for L. wangii, the others were known only from China or Asia. In total, ten taxa were provided with modern or new macromorphological descriptions based on the dried basidiocarps and with illustrations of basidiospores, pleuromacrocystidia, pileipellis and (or) stipitipellis. As a result of this re-examination, the differences between these taxa and their closely related taxa were discussed and their taxonomic positions in four contemporary infrageneric classification systems of Lactarius were proposed. Based on recent conspecific collections, information on habitats and geographical distribution of some species was provided.
67
Wang XH , 2016. Three new species of Lactarius sect. Deliciosi from subalpine-alpine regions of central and southwestern China. Cryptogamie Mycologie, 37:493-508
68
Wang XH , 2017. Two new species of Lactarius subg. Russularia from subalpine regions of southwestern China. Journal of Fungal Research, 15(4):222-228
69
Wang XH , 2018. Fungal biodiversity profiles 71-80. Cryptogamie Mycologie, 39(4):419-445
70
Wang XH, Buyck B, Verbeken A, Hansen K , 2015a. Revisiting the morphology and phylogeny of Lactifluus with three new lineages from southern China. Mycologia, 107(5):941-958
As a recent group mainly defined by molecular data the genus Lactifluus is in need of further study to provide insight into the morphological and molecular variation within the genus, species limits and relationships. Phylogenetic analyses of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1 and D2 domains of nuc 28S rDNA (28S), and part of the second largest subunit of the RNA polymerase II (rpb2) (6-7 region) sequences of 28 samples from southern China revealed three new lineages of Lactifluus. Two of them are nested in a major clade that includes the type of Lactifluus and here is treated as two new sections: L. sect. Ambicystidiati and L. sect. Tenuicystidiati. Lactifluus ambicystidiatus, described here as a new species (= sect. Ambicystidiati), has both lamprocystidia and macrocystidia in the hymenium, a unique combination of features within Russulaceae. Furthermore, only remnants of lactiferous hyphae are present in L. ambicystidiatus and our results suggest that the ability to form a lactiferous system has been lost in this lineage. Lactifluus sect. Tenuicystidiati forms a strongly supported monophyletic group as a sister lineage to L. sect. Lactifluus. We recognize it based on the thin-walled macrocystidia and smaller ellipsoid spores with an incomplete reticulum compared with L. sect. Lactifluus. The former placement of L. tenuicystidiatus in the African L. sect. Pseudogymnocarpi is not supported. Using genealogical concordance we recognize five phylogenetic species within L. sect. Tenuicystidiati and describe two of these as new, L. subpruinosus and L. tropicosinicus. The third lineage, represented by L. leoninus, forms a sister group to L. subg. Lactariopsis sensu stricto. The three lineages provide further evidence for morphological features in Lactifluus being homoplasious. Some sections and species complexes are likely to be composed of more species and merit further investigations. Subtropical-tropical Asia is likely a key region for additional sampling.
71
Wang XH, Halling RE, Hofstetter V, Lebel T, Buyck B , 2018. Phylogeny, biogeography and taxonomic reassessment of Multifurca (Russulaceae, Russulales) using three-locus data. PLoS One, 13(1):e0205840
72
Wang XH, Liu PG , 2002. Resources investigation and studies on the wild commercial fungi in Yunnan. Biodiversity Science, 10(3):318-325 (in Chinese)
摘要
Yunnan is an area rich in wild commercial fungi resources, namely, fungi sold in markets. Much attention has been paid to fungal resources in the past. However, comprehensive investigation and studies on the resources were wanting. Through investigation, collection and identification of species, the geographical distribution patterns, seasonal changes and ranking based on the trade volume and the economic value of the resources were documented continuously from 1997 to 2001. In total, 207 species (including varieties and forms) belonging to 64 genera are recognized, showing high diversity and high endemicity. Among the species, those of the genera Boletus, Tricholoma, Termitomyces, Thelephora, Russula, Lactarius, and Ramaria are main commercial fungi. Despite artificial selection, commercial fungi show obvious geographical distribution patterns: southern Yunnan is rich in tropical species and northwestern Yunnan is rich in temperate alpine and subalpine species. Central and southwestern Yunnan fungal communities display subtropical and temperate characters. Each area possesses its own typical species and they are related by some transitional ones. We ranked the commercial fungi species in the order of trade volume. Those of grade I and II are the dominant species. Almost 90% of the commercial fungi are edible and about 5% are medicinal, while 7% are poisonous. The economic value of each species is also provided.
73
Wang XH, Nuytinck J, Verbeken A , 2015b. Lactarius vividus sp. nov. (Russulaceae, Russulales), a widely distributed edible mushroom in central and southern China. Phytotaxa, 231(1):63-72
74
Wang XH, Verbeken A , 2006. Three new species of Lactarius subgen. Lactiflui. Nova Hedwigia, 83(1-2):167-176
75
Wang XH, Yang ZL, Li YC, Knudsen H, Liu PG , 2009. Russula griseocarnosa sp. nov. (Russulaceae, Russulales), a commercially important edible mushroom in tropical China: mycorrhiza, phylogenetic position, and taxonomy. Nova Hedwigia, 88(1-2):269-282
76
Wang XH, Yu FQ, Liu PG , 2004. Color Atlas of wild commercial mushrooms in Yunnan. Yunnan Science and Technology Press, Kunming. 1-136
77
Wisitrassameewong K, Looney BP, Le HT, de Crop E, Das K, van de Putte K, Eberhardt U, Guo JY, Stubbe D, Hyde KD, Verbeken A, Nuytinck J , 2016. Lactarius subgenus Russularia (Basidiomycota, Russulales): novel Asian species, worldwide phylogeny and evolutionary relationships. Fungal Biology, 120(12):1554-1581
78
Wisitrassameewong K, Nuytinck J, Le HT, de Crop E, Hampe F, Hyde KD, Verbeken A , 2015. Lactarius subgenus Russularia (Russulaceae) in South-East Asia: 3. new diversity in Thailand and Vietnam. Phytotaxa, 207(3):215-241
79
Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC , 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98(1):1-76
80
Ying JZ, Zang M (eds.), 1994. Economic macrofungi from Southwestern China. Science Press, Beijing. 1-399(in Chinese)
81
Zhang JB, Li JW, Li F, Qiu LH , 2017. Russula dinghuensis sp. nov. and R. subpallidirosea sp. nov., two new species from southern China supported by morphological and molecular evidence. Cryptogamie Mycologie, 38(2):191-203
82
Zhao Q, Li YK, Zhu XT, Zhao YC, Liang JF , 2015. Russula nigrovirens sp. nov. (Russulaceae) from southwestern China. Phytotaxa, 236(3):249-256
83
陈言柳, 刘萌, 张林平, 苏明声, 吴斐 , 2019, 中国乳菇属真菌一新记录种-思茅乳菇. 河南农业科学, 48(1):105-109,152
84
陈作红, 杨祝良, 图力古尔, 李泰辉 , 2016. 毒蘑菇识别与中毒防治. 北京: 科学出版社. 1-308
85
李国杰, 李赛飞, 文华安 , 2010. 中国红菇属物种资源经济价值. 食用菌学报, 2010(增刊):155-160
86
李国杰, 李赛飞, 赵东, 文华安 , 2015. 红菇属研究进展. 菌物学报, 34(5):821-848
87
王向华, 刘培贵 , 2002. 云南野生贸易真菌资源调查及研究. 生物多样性, 10(3):318-325
野生贸易真菌即市场上出售的野生真菌,云南的野生贸易真菌资源十分丰富且长期以来受到关注。但以往对于这一资源的全面调查和研究较为缺乏。本项目通过市场调查、标本采集和鉴定,自1997~2001年连续4年对云南野生贸易真菌从种类、地理分布、季节变化、基于贸易量的优势度评价和经济价值5方面进行研究。云南野生贸易真菌已知共64属207种(含变种、变型),以担子菌中的牛肝菌属(Boletus)、口蘑属(Tricholoma)、鸡土从菌属(Termitomyces)、革菌属(Thelephora)、红菇属(Russula)、乳菇属(Lactarius)、丛枝瑚属(Ramaria)为主,表现出较高的多样性和较强的地区特有性。尽管具有人为选择的因素,但云南野生贸易真菌仍表现出较强的地理分布特异性:滇南地区包含较多的热带种类,具有较强的热带性质,而滇西北则具有较强的温带高山、亚高山性质,滇中、滇西南等地表现出亚热带和温带的过渡特征。以上各地区既有各自的代表种类,又通过某些过渡类群存在一定的联系。根据各个种贸易量的相对大小即优势度将贸易真菌分为4个等级,其中的优势Ⅰ级和优势Ⅱ级为主导种类。云南贸易真菌中约近90%的种类为食用菌,5%为药用菌,另有约7%为有毒种类。对每一种贸易真菌的经济价值给予了评价。
88
王向华, 于富强, 刘培贵 , 2004. 云南野生商品蘑菇图鉴. 昆明: 云南科技出版社. 1-136
89
应建浙, 臧穆( 主编 ), 1994. 西南地区大型经济真菌. 北京: 科学出版社. 1-399

基金

国家自然科学基金(30300002)
国家自然科学基金(30970020)
国家自然科学基金(31770031)
国家自然科学基金(31093440)
中国科学院东亚植物多样性与生物地理学重点实验室开放课题(LPB201501)
环境保护部生物多样性调查评估项目(2019HJ2096001006)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(6422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/