红菇科可食真菌的若干分类问题

王向华

菌物学报 ›› 2020, Vol. 39 ›› Issue (9) : 1617-1639.

PDF(6422 KB)
中文  |  English
PDF(6422 KB)
菌物学报 ›› 2020, Vol. 39 ›› Issue (9) : 1617-1639. DOI: 10.13346/j.mycosystema.200209 CSTR: 32115.14.j.mycosystema.200209
综述

红菇科可食真菌的若干分类问题

作者信息 +

Taxonomic comments on edible species of Russulaceae

Author information +
文章历史 +

摘要

红菇科Russulaceae包含大量全球广泛采食的野生食用菌,同时也有一定数目的毒菌。该科特别是红菇属的分类是大型真菌分类的难点。近年来DNA数据大量应用于红菇科的分类,更新了属的界定和概念,发现了大量新物种,为食用菌和毒菌的识别和鉴定带来了可用的名称。然而,DNA证据并不总是与形态证据吻合,这又为食用菌和毒菌的识别和名称的使用带来了困扰和不便。本文针对乳菇属、多汁乳菇属和红菇属中的重要食用菌类群,回顾了近年来的分类研究进展,分析了研究背后的数据实情和存在的分类问题。认为:在食用菌和毒菌的确定上,依靠物种复合群共有的形态特征更具有可操作性;依据DNA序列进行的劈分式分类和依靠少数样品的特征及DNA序列上的少量差异发表新种的做法可能产生不便于使用的后果;在乳菇属和红菇属中,“BLAST相似度低的即为新种”的分类实践存在错误风险;充分结合历史资料和各个类群的特点,确定物种划分的阈值,才能有望解决红菇科真菌的分类问题。

Abstract

The family Russulaceae includes a large number of edible species collected and consumed worldwide and some poisonous ones. The family, especially the genus Russula is notoriously difficult in taxonomy. Application of DNA data to the taxonomic studies updates the limits and concepts of its constituent genera and uncovers an increasing number of new species. This brings available names for identification of edible and poisonous species, but simultaneously causes confusion and inconvenience when using the new and amended names due to discordance between molecular and morphological evidences. Focusing on several important edible groups of Russulaceae, this paper reviews the most recent progresses in the taxonomy of Russulaceae, analyzes the data supporting the studies and gives comments on the taxonomic issues. The author concludes that morphological approach is more feasible in identifying edible or poisonous species if shared characters within a species complex are fully understood. Splitting taxonomy using only DNA data and describing new species with insufficient sampling and few changes in sequence data may have unpractical taxonomic outcomes. In the taxonomic practice of Lactarius and Russula, “low similarity in BLAST equal to new species” has a risk of producing synonyms. To achieve a thoroughly resolved taxonomy, full reference to historical documents and setting appropriate cutoffs when delimitating species by respecting the personality of each group is needed.

关键词

内转录间隔区 / 系统发育分支 / 形态特征 / 地理分布 / 新物种

Key words

ITS / phylogenetic clades / morphological characters / geographical distribution / new species

引用本文

导出引用
王向华. 红菇科可食真菌的若干分类问题[J]. 菌物学报, 2020, 39(9): 1617-1639 https://doi.org/10.13346/j.mycosystema.200209
WANG Xiang-Hua. Taxonomic comments on edible species of Russulaceae[J]. Mycosystema, 2020, 39(9): 1617-1639 https://doi.org/10.13346/j.mycosystema.200209
丛赤壳科Nectriaceae成立于1865年,模式属为丛赤壳属Nectria (Fr.) Fr.。Rossman et al. (1999)根据形态学特征,将广义的丛赤壳类真菌划分为丛赤壳科和生赤壳科Bionectriaceae。丛赤壳科的主要特征包括子座发达或具基部子座,子囊壳肉质,具丛赤壳型中心体,单生至聚生,表生,近球形、球形、倒梨形至椭圆球形,子囊壳颜色鲜艳,KOH+,LA+,子囊壳表面光滑、具疣状物或毛状物,壳壁厚度通常大于25 μm, 子囊圆柱形至柱棒状, 子囊孢子椭圆形至拟纺锤形, 无分隔至具多个分隔,表面平滑、具条纹、小刺或疣状突起,无色至淡黄褐色(Rossman et al. 1999;庄文颖 2013;Lombard et al. 2015)。目前丛赤壳科已知约55属900余种(Lombard et al. 2015),我国累计报道16属100余种(庄文颖 2013; Zeng & Zhuang 2014, 2015, 2016a, 2016b, 2016c, 2017, 2018, 2019, 2020, 2021a, 2021b; Zeng et al. 2018)。 该科真菌主要分布于温带和热带地区,物种多样性丰富,对农林业发展有重要影响,开展资源调查和系统分类研究,将更新对我国种质资源的认识。

1 材料与方法

研究材料主要采自安徽、河南、湖北、云南和西藏等地的自然保护区和森林公园。采用常规研究方法(Rossman et al. 1999),记录子囊壳在3%氢氧化钾(potassium hydroxide,KOH)水溶液和100%乳酸(lactic acid,LA)溶液中的颜色变化。为观察解剖结构特征,将子囊壳置于冷冻切片机YD-1508A(中国金华)上制作厚度约6-8 μm的切片,在解剖镜Olympus SZX7下选取结构完整的切片用乳酚棉兰染色,显微观察其壳壁结构和附属物特征。挑取单个子囊壳制作压片,经乳酚棉兰染色,显微观察子囊和子囊孢子的形状、大小,孢子的颜色、表面纹饰和分隔情况;采用Zeiss Axioskop 2 plus (哥廷根)光学显微镜配备的Canon G5摄像系统拍照。观察菌株在CMD (cornmeal dextrose agar)、PDA (potato dextrose agar)和SNA (synthetic nutrient-poor agar) (Nirenberg 1976)培养基上25 ℃培养7 d的菌落形态,测量菌落直径。
研究标本存放于中国科学院微生物研究所菌物标本馆(herbarium mycologicum academiae sinicae,HMAS),菌种保藏于微生物研究所真菌学国家重点实验室。参照Wang & Zhuang (2004)的方法提取菌丝DNA,使用引物ITS5/ITS4 (White et al. 1990)和LR0R/LR5 (Rehner & Samuels 1994)扩增ITS和LSU序列,获得序列提交至GenBank,使用BioEdit 7.0.5.3 (Hall 1999)进行序列拼接、比对和编辑,运用BLASTN在NCBI (https://www.ncbi.nlm.nih.gov/)数据库进行检索。
本研究综合形态解剖、培养性状、DNA序列和无性阶段等特征,对各标本进行系统分类鉴定。采用最大简约(maximum parsimony,MP)和贝叶斯(Bayesian inference,BI)方法明确其系统发育位置,选取ITS和LSU序列构建系统发育树。进化树中,最大简约分析支持率(bootstrap proportion,BP)大于50%和贝叶斯分析后验概率(posterior probability,PP)大于90%分别显示在各分支节点上。

2 分类

肯达拉赤壳 图1
Cosmospora khandalensis (Thirum. & Sukapure) Gräfenhan & Seifert [as 'khandalense'], in Gräfenhan, Schroers, Nirenberg & Seifert, Stud. Mycol. 68: 96, 2011. Fig. 1
Cephalosporium khandalense Thirum. & Sukapure, in Sukapure & Thirumalachar, Mycologia 58(3): 359, 1966.
图1 肯达拉赤壳 (HMAS 247850)

A-C:25 ℃培养7 d的菌落形态 (A:PDA;B:CMD;C:SNA);D-L:分生孢子梗和分生孢子. 标尺:D-L=10 μm

Fig. 1 Cosmospora khandalensis (HMAS 247850).

A-C: Colonies after 7 d at 25 °C (A: PDA; B: CMD; C: SNA); D-L: Conidiophores and conidia. Bars: D-L=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长7 d菌落直径22-23 mm,表面絮状,气生菌丝致密,白色,产生黄绿色色素;在CMD培养基上,25 ℃生长7 d菌落直径23-24 mm,表面绒毛状,气生菌丝稀疏,白色,产生黄绿色色素;在SNA培养基上,25 ℃生长7 d菌落直径21-23 mm,表面绒毛状,气生菌丝稀疏,白色,产生淡黄绿色色素。无性阶段acremonium型,分生孢子梗无色,不分枝或简单分枝,产孢细胞为单瓶梗,圆柱形,长34-64 μm,基部宽1.5-2.5 μm,顶部宽1.0-1.5 μm;分生孢子卵圆形至椭圆形,末端钝圆,无分隔,无色,表面平滑,2.5-5×1.5-2 μm,末端具黏性,通常聚集成团。
标本:湖北神农架木城哨卡,枯枝上生,2014 Ⅸ 22,郑焕娣、曾昭清、秦文韬、陈凯 10045,HMAS 247850 (ITS、LSU GenBank登录号:OK103798、OK103806)。
世界分布:中国、印度、日本、阿根廷、巴西。
讨论:湖北菌株分离自枯枝,其菌落形态、分生孢子等特征与Sukapure & Thirumalachar (1966)和Herrera et al. (2015)的描述一致。序列分析显示中国材料与产于印度的模式菌株(CBS 356.65) ITS序列仅相差1 bp (522/523),LSU完全相同(796/796)。
翠绿赤壳 图2
Cosmospora viridescens (C. Booth) Gräfenhan & Seifert, in Gräfenhan, Schroers, Nirenberg & Seifert, Stud. Mycol. 68: 96, 2011. Fig. 2
Nectria viridescens C. Booth, Mycol. Papers 73: 89, 1959.
图2 翠绿赤壳 (HMAS 247851)

A-C:25 ℃培养7 d的菌落形态 (A:PDA;B:CMD;C:SNA);D-L:分生孢子梗和分生孢子. 标尺:D-L=10 μm

Fig. 2 Cosmospora viridescens (HMAS 247851).

A-C: Colonies after 7 d at 25 °C (A: PDA; B: CMD; C: SNA); D-L: Conidiophores and conidia. Bars: D-L=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长7 d菌落直径23-24 mm,表面絮状,气生菌丝致密,白色,产生黄色至黄绿色色素;在CMD培养基上,25 ℃生长7 d菌落直径25-26 mm,表面絮状,气生菌丝较稀疏,白色,产生黄绿色色素;在SNA培养基上,25 ℃生长7 d菌落直径25-27 mm,表面绒毛状,气生菌丝稀疏,白色。无性阶段acremonium型,分生孢子梗无色,不分枝或简单分枝,产孢细胞为单瓶梗,圆柱形,长30-68 μm,基部宽1.8-2.5 μm,顶部宽1.0-1.2 μm;分生孢子椭圆形至杆形,末端钝圆,无分隔,无色,表面平滑,3-5×2-3 μm,末端具黏性,少数聚集成团。
标本:西藏米林南伊沟,Ganoderma sp.上生,2016 Ⅸ 13,郑焕娣、曾昭清、王新存、陈凯、张玉博 10806,HMAS 247851 (ITS、LSU GenBank登录号:OK103799、OK103807)。
世界分布:中国、捷克、丹麦、英国。
讨论:西藏菌株的形态特征与Booth (1959)提供的原始描述一致。Gräfenhan et al. (2011)对其形态相近种进行了详细讨论。我国菌株与捷克菌株(CBS 102430)的ITS和LSU序列分别相差2 bp (518/520)和3 bp (785/788),与来自英国的模式菌株(IMI 73377a)相差5 bp (534/539)和6 bp (782/788),将上述差异视为种内变异。这是该种首次在亚洲发现(Herrera et al. 2015)。
剑孢新赤壳 图3
Neocosmospora protoensiformis Sand.-Den. & Crous, in Sandoval-Denis, Lombard & Crous, Persoonia 43: 156, 2019. Fig. 3
Fusarium protoensiforme (Sand.-Den. & Crous) O’Donnell, Geiser, Kasson & T. Aoki, in Aoki, Geiser, Kasson & O'Donnell, Index Fungorum 440: 3, 2020.
图3 剑孢新赤壳 (HMAS 290889)

A-C:自然基物上的子囊壳;D,E:25 ℃培养7 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-I:子囊及子囊孢子;J-L:子囊孢子;M,N:分生孢子梗和小型分生孢子;O:小型分生孢子;P-S:大型分生孢子. 标尺:A-C=1 mm;F=50 μm;G-S=10 μm

Fig. 3 Neocosmospora protoensiformis (HMAS 290889).

A-C: Ascomata on natural substratum; D, E: Colonies after 7 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-I: Asci with ascospores; J-L: Ascospores; M, N: Conidiophores and microconidia; O: Microconidia; P-S: Macroconidia. Bars: A-C=1 mm; F=50 μm; G-S=10 μm.

Full size|PPT slide

无子座;子囊壳单生至群生,表生,球形至梨形,表面具疣状物,乳突较小,干后侧面明显凹陷,新鲜时为鲜红色,干后为深红色,在3% KOH水溶液中呈暗红色,100%乳酸溶液中呈黄色,高274-363 μm,直径216-294 μm;疣状物高4-40 μm,细胞球形至近球形,8-22×6-20 μm;壳壁厚20-50 μm,细胞矩胞组织至角胞组织,5.4-15×2.2-8 μm,胞壁厚1.0-1.5 μm;子囊棒状,顶部简单,无顶环,具8个孢子,43-60×5-10 μm;子囊孢子椭圆形,具1个分隔,分隔处稍缢缩,无色,表面平滑,在子囊中斜向单列排列,10-15× 5-8 μm。
在PDA培养基上,25℃培养7 d菌落直径40 mm,气生菌丝致密,白色;在SNA培养基上,25 ℃培养7 d菌落直径45 mm,白色,气生菌丝稀疏;分生孢子梗简单分枝,锥形、近圆柱形至针形,表面光滑,长22-56 μm,基部宽2-3 μm,顶部宽1-1.5 μm;大型分生孢子镰刀形,通常一端带小弯钩,具4-9个分隔,50-85×4-5 μm;小型分生孢子卵圆形、棒状至椭圆形,不弯曲,具0(-1)个分隔,无色,表面平滑,8-17(-20)×3-5 μm,末端具黏性,少数聚集成团。
标本:云南高黎贡山百花岭,枯树皮上生,2017 Ⅸ 15,张意、郑焕娣、王新存、张玉博 11363,HMAS 290889 (ITS、LSU GenBank登录号:OK103800、OK103808)。
世界分布:中国、委内瑞拉。
讨论:该种可在人工培养基上产生子囊壳,与自然基物上的相比,子囊壳和子囊孢子的大小基本一致,子囊稍大(53-105×8-13.8 μm vs. 43-60× 5-10 μm) (Sandoval-Denis et al. 2019),我国菌株与产自委内瑞拉的模式菌株(NRRL 22178)的ITS序列相差5 bp (518/523),LSU序列完全一致(535/535)。本研究将上述差异处理为种内变异。
罗杰森假赤壳 图4
Pseudocosmospora rogersonii C.S. Herrera & P. Chaverri, Mycologia 105(5): 1299, 2013. Fig. 4
图4 罗杰森假赤壳 (HMAS 247852)

A,B:25 ℃培养14 d的菌落形态 (A:PDA;B:SNA);C-I:分生孢子梗和分生孢子;J,K:分生孢子. 标尺:C-K=10 μm

Fig. 4 Pseudocosmospora rogersonii (HMAS 247852).

A, B: Colonies after 14 d at 25 °C (A: PDA; B: SNA); C-I: Conidiophores and conidia; J, K: Conidia. Bars: C-K=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长14 d菌落直径37 mm,具壳状,粉红至米褐色,背面同色;在SNA培养基上,25 ℃生长14 d菌落直径15 mm,气生菌丝极稀疏,淡粉色。无性阶段acremonium型,分生孢子梗简单,不分枝,圆柱形,朝顶部渐细,无色,长28-95 μm,基部宽1.2-1.5 μm,顶部宽0.8-1 μm。分生孢子矩形、椭圆形至杆状,不分隔,无色,表面平滑,2.5-5×1-1.8 μm。
标本:安徽金寨天堂寨,真菌上生,2011 Ⅷ 24,陈双林、庄文颖、曾昭清、郑焕娣7889,HMAS 247852 (ITS、LSU GenBank登录号:OK103796、OK103804)。
世界分布:中国、美国。
讨论:与Herrera et al. (2013)基于美国材料对该种的描述相比,我国安徽菌株的分生孢子略小(2.5-5×1-1.8 μm vs. 2.9-5.5×1.1-2.6 μm),其他特征相同。菌株7889的ITS (520/520)和LSU (764/764)序列与模式菌株BPI 1107121完全一致。该种在我国发现使其分布范围由北美洲扩展至亚洲。
瘤顶赤壳 图5
Tumenectria laetidisca (Rossman) Salgado & Rossman, in Salgado-Salazar, Rossman & Chaverri, Fungal Diversity 80: 451, 2016. Fig. 5
Nectria laetidisca Rossman, Mycol. Pap. 150: 36, 1983.
=Cylindrocarpon bambusicola Matsush., Matsush. Mycol. Mem. 5: 9. 1987.
图5 瘤顶赤壳 (HMAS 290890)

A-C:自然基物上的子囊壳;D,E:25 ℃培养14 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-K:分生孢子梗和分生孢子;L:厚垣孢子. 标尺:A-C=1 mm;F=50 μm;G-L=10 μm

Fig. 5 Tumenectria laetidisca (HMAS 290890).

A-C: Ascomata on natural substratum; D, E: Colonies after 14 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-K: Conidiophores and conidia; L: Chlamydospores. Bars: A-C=1 mm; F=50 μm; G-L=10 μm.

Full size|PPT slide

无子座;子囊壳单生,表生,球形至近球形,顶部具乳突,高38-75 μm,基部宽50-100 μm,顶部宽30-50 μm,干后不凹陷,新鲜时为鲜红色,干后为深红色,在3% KOH水溶液中呈暗红色,100%乳酸溶液中呈黄色,高225-304 μm,直径206-225 μm;壳壁厚28-48 μm,分2层,外层厚23-41 μm,细胞角胞组织至球胞组织,5-13× 3-8 μm,胞壁厚0.8-1.0 μm;内层厚5-7 μm,细胞矩胞组织,8-15×2.5-3.5 μm,胞壁厚0.6-0.8 μm;子囊和子囊孢子未见。
在PDA培养基上,25 ℃生长14 d菌落直径36 mm,表面絮状,气生菌丝致密,白色,背面产生米黄色至淡黄褐色色素;在SNA培养基上,25 ℃生长14 d菌落直径42 mm,表面绒毛状,气生菌丝稀疏,白色。无性阶段cylindrocarpon型,分生孢子梗无色,产孢细胞圆柱形,18-35×3.5- 5 μm;大型分生孢子圆柱形至纺锤形,中间宽,两端略圆,具3-5个分隔,48-77.1×7.4-10.9 μm;偶见厚垣孢子,球形至近球形,直径5-18 μm,间生或串生。
标本:河南洛阳重渡沟,枯枝上生,2013 Ⅸ 20,郑焕娣、曾昭清、朱兆香8813,HMAS 290890 (ITS、LSU GenBank登录号:OK103797、OK103805)。
世界分布:中国、日本、牙买加。
讨论:该种曾被纳入Nectria,综合形态学特征和分子系统学证据,Salgado-Salazar et al. (2016)以其为模式种建立新属Tumenectria Salgado & Rossman,目前仅包括1个种。河南材料状态不佳,子囊壳数量很少,未观察到子囊和子囊孢子,其无性阶段特征符合Salgado-Salazar et al. (2016)的描述。中国菌株(8813)与日本菌株(CBS 100284)的ITS (478/478)和LSU (797/797)序列完全一致,而与牙买加的模式菌株(CBS 101909)分别相差5 bp (473/478)和0 bp (797/797)。

3 系统发育分析

为了清晰地显示5个中国新记录种的系统发育位置,选择丛赤壳科的7个种14个菌株的ITS和LSU序列,以Stachybotrys chartarum为外群,运用MP和BI方法分别构建系统发育树。结果显示,BI树和MP树的拓扑结构一致,最大简约分析产生的唯一进化树(图6)显示菌株HMAS 247850、247851、290889、247852和290890分别与Cosmospora khandalensisCosmospora viridescensNeocosmospora protoensiformisPseudocosmospora rogersoniiTumenectria laetidisca聚类在一起,从而支持了上述形态学研究的结果。
图6 基于ITS和LSU序列的MP树

粗体显示5个中国新记录种的系统发育位置,MPBP大于50% (左)、BIPP大于90% (右)标注于分支节点上

Fig. 6 Maximum parsimony phylogram reconstructed from the combined sequences of ITS and LSU.

the phylogenetic position of the five Nectriaceae species new to China. MPBP above 50% (left) showing and BIPP above 90% (right) are given respectively.

Full size|PPT slide

参考文献

1
Adamčik S, Looney B, Cabon M, Jancovicova S, Adamcikova K , et al., 2019. The quest for a globally comprehensible Russula language. Fungal Diversity, 99:369-449
2
Arora D , 1986. Mushrooms demystified. Ten Speed Press, Berkeley. 1-959
3
Boa E , 2004. Wild edible fungi a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome. 1-147
4
Buyck B , 1990. Nouveaux taxons infragénériques dans le genre Russula Persoon en Afrique centrale. Bulletin du Jardin Botanique National Belgique, 60:191-211
5
Buyck B , 2008. The edible mushrooms of Madagascar: an evolving enigma. Economic Botany, 62(3):509-520
6
Buyck B, Hofstetter V, Verbeken A, Walleyn R , 2010. Proposal to conserve Lactarius nom. cons. (Basidiomycota) with a conserved type. Taxon, 59:295-296
7
Buyck B, Hofstetter V, Eberhardt U, Verbeken A, Kauff F , 2008. Walking the thin line between Russula and Lactarius: the dilemma of Russula subsect. Ochricompactae. Fungal Diversity, 28:15-40
8
Buyck B, Wang XH, Adamčíková K, Cabon M, Jančovičová S, Hofstetter V, Adamčík S , 2020. One step closer to unravelling the origin of Russula: subgenus Glutinosae subg. nov. Mycosphere, 11(1):285-304
9
Buyck B, Adamčik S , 2013. Type studies in Russula subsection Lactarioideae from North America and a tentative key to North American species. Cryptogamie Mycologie, 34(3):259-279
10
Buyck B, Zoller S, Hofstetter V , 2018. Walking the thin line… ten years later: the dilemma of above versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity, 89:267-292
11
Caboň M, Jančovičová S, Trendel JM, Pierre‑Arthur M, Hampe F, Kolařík M, Verbeken A, Adamčík S , 2018. Blum versus Romagnesi: testing possible synonymies of some European russulas (Russulaceae, Basidiomycota). Plant Systematics and Evolution, 304:747-756
12
Chen YL, Liu M, Zhang LP, Su MS, Wu F , 2019. A new record species of Lactarius from China - Lactarius kesiyae. Journal of Henan Agriculatural Sciences, 48(1):105-109, 152 (in Chinese)
13
Chen ZH, Yang ZL, Bau T, Li TH , 2016. Poisonous mushrooms: recognition and poisoning treatment. Science Press, Beijing. 1-308(in Chinese)
14
Chiu WF , 1945. The Russulaceae of Yunnan. Lloydia, 8:31-59
15
Das K, van de Putte K, Buyck B , 2011. New and interesting Russula from Sikkim Himalaya (India). Cryptogamie Mycologie, 31(4):373-387
16
de Crop E, Nuytinck J, Van de Putte K, Wisitrassameewong K, Hackel J, Stubbe D, Hyde KD, Roy M, Halling RE, Moreau PA, Eberhardt U, Verbeken A , 2017. A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus. Persoonia, 38:58-80
Infrageneric relations of the genetically diverse milkcap genus Lactifluus (Russulales, Basidiomycota) are poorly known. Currently used classification systems still largely reflect the traditional, mainly morphological, characters used for infrageneric delimitations of milkcaps. Increased sampling, combined with small-scale molecular studies, show that this genus is underexplored and in need of revision. For this study, we assembled an extensive dataset of the genus Lactifluus, comprising 80 % of all known species and 30 % of the type collections. To unravel the infrageneric relationships within this genus, we combined a multi-gene molecular phylogeny, based on nuclear ITS, LSU, RPB2 and RPB1, with a morphological study, focussing on five important characteristics (fruit body type, presence of a secondary velum, colour reaction of the latex/context, pileipellis type and presence of true cystidia). Lactifluus comprises four supported subgenera, each containing several supported clades. With extensive sampling, ten new clades and at least 17 new species were discovered, which highlight the high diversity in this genus. The traditional infrageneric classification is only partly maintained and nomenclatural changes are proposed. Our morphological study shows that the five featured characteristics are important at different evolutionary levels, but further characteristics need to be studied to find morphological support for each clade. This study paves the way for a more detailed investigation of biogeographical history and character evolution within Lactifluus.
17
de Crop E, Hampe F, Wisitrassameewong KF, Stubbe D, Nuytinck J, Verbeken A , 2018. Novel diversity in Lactifluus section Gerardii from Asia: five new species with pleurotoid or small agaricoid basidiocarps. Mycologia, 110(5):962-984
18
Elliott TF, Trappe JM , 2018. A worldwide nomenclature revision of sequestrate Russula species. Fungal Systematics and Evolution, 1:229-242
Before the application of molecular techniques, evolutionary relationships between sequestrate genera and their epigeous counterparts in the Russulaceae were unclear. Based on overwhelming evidence now available, personal observations, and consideration of the International Code for Nomenclature of Algae, Fungi and Plants, we combine the overlapping sequestrate generic names Bucholtzia, Cystangium, Elasmomyces, Gymnomyces, Macowanites, and Martellia with the agaricoid genus Russula. This nomenclatural action follows precedents set by earlier mycologists and continues an effort to create clarity in our understanding of the evolutionary affiliations among sequestrate fungi - particularly the Russulaceae. We also provide the first comprehensive list of described sequestrate species of Russula.
19
Hall I, Stephenson SL, Buchanan PK, Wang Y, Cole ALJ , 2003. Edible and poisonous mushrooms of the world. New Zealand Institute for Crop & Food Research Limited, Christchurch. 1-371
20
Han Y, Liang CZ, Liu PG, Nuytinck J, Wang XH , 2019. Lactarius guangdongensis sp. nov. (Russulaceae, Russulales), a species of Lactarius sect. Deliciosi growing with a vulnerable five-needle pine, Pinus kwangtungensis. Phytotaxa, 393(3):278-286
21
Härkönen M, Niemelä T, Mwasumbi L , 2003. Tanzanian mushrooms. Botanical Museum, Finnish Museum of Natural History, Helsinki. 1-200
22
Hesler LR, Smith AH , 1979. North American species of Lactarius. University of Michigan Press, Ann Arbor. 1-841
23
Hongo T , 1954. Two new Agarics from Omi. Acta Phytotaxonomica Geobotanica, 15(4):102-104
24
Jiang XM, Li YK, Liang JF, Wu JR , 2017. Russula brunneovinacea sp. nov., from northeastern China. Mycotaxon, 132:789-797
25
Kauffman CH , 1918. The Agaricaceae of Michigan, Vol. I, II. Michigan Geological and Biological Survey, Publ. 26, Biol. Ser. 5. Wynkoop Hallenbeck Crawford Co., State Printers, Lansing. 1-924
26
Kawamura S , 1911. On a poisonous fungus, Lactarius torminosus (Schaeff.) Fr. which causes inflammation of human limbs. The Botanical Magazine, 25(291):104-115
27
Khatua S, Dutta AK, Acharya K , 2015. Prospecting Russula senecis: a delicacy among the tribes of West Bengal. Peer J, 3:19
28
Knudsen H, Borgen T , 1982. Russulaceae in Greenland. In: Arctic and Alpine Mycology 1. University of Washington Press, Seattle and London. 1-559
29
Lee H, Park MS, Jung PE, Eimes JA, Seok SJ, Lim YW , 2017. Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea. Mycoscience, 58(5):351-360
30
Lee H, Wisitrassameewong K, Park MS, Verbeken A, Eimes J, Lim YW , 2019. Taxonomic revision of the genus Lactarius (Russulales, Basidiomycota) in Korea. Fungal Diversity, 95:275-335
31
Li F, Deng QL , 2018. Three new species of Russula from South China. Mycological Progress, 17:1305-1321
32
Li GJ, Deng CY, Shi LY, Wang J, Meng QF, Li SM , 2020a. Three new species of Russula subsect. Lactarioideae from China. Mycosystema, 39:618-636
33
Li GJ, Li SF, Wen HA , 2010. The Russula species resource and its economic values of China. Acta Edulis Fungi, 2010 ( Suppl.):155-160 (in Chinese)
34
Li GJ, Li SF, Zhao D, Wen HA , 2015. Recent research progress of Russula (Russulales, Agaricomycetes): a review. Mycosystema, 34(5):821-848 (in Chinese)
35
Li GJ, Zhao RL, Zhang CL, Lin FC , 2019. A preliminary DNA barcode selection for the genus Russula (Russulales, Basidiomycota). Mycology, 10(2):61-74
Russula is a worldwid genus which has a high species diversity . Aiming accurate and rapid species identification, candidate genes nLSU (28S), ITS, tef-1alpha, mtSSU, rpb1, and rpb2, were analysed as potential DNA barcodes. This analysis included 433 sequences from 38 well-circumscribed Russula species of eight subgenera. Two vital standards were analysed for success species identification using DNA barcodes, specifically inter- and intra-specific variations together with the success rates of PCR amplification and sequencing. Although the gap between inter- and intra-specific variations was narrow, ITS met the qualification standards for a target DNA barcode. Overlapping inter- and intra-specific pairwise distances were observed in nLSU, tef-1alpha, mtSSU, and rpb2. The success rates of PCR amplification and sequencing in mtSSU and rpb1 were lower than those of others. Gene combinations were also investigated for resolution of species recognition. ITS-rpb2 was suggested as the likely target DNA barcode for Russula, owing to the two viatal standards above. Since nLSU has the lowest minimum of inter-specific variation, and tef-1alpha has the highest overlap between intra- and inter-species variations among the candidate genes, they are disqualified from the selection for DNA barcode of Russula.
36
Li HJ, Zhang HS, Zhang YZ, Zhang KP, Zhou J, Yin Y, Jiang SF, Ma PB, He Q, Zhang YT, Wen K, Yuan Y, Lang N, Lu JJ, Sun CY , 2020b. Mushroom poisoning outbreaks — China, 2019. China CDC Weekly, 2(2):19-27
37
Li MC, Liang JF, Li YC, Feng B, Yang ZL, James TY, Xu JP , 2010. Genetic diversity of dahongjun, the commercially important “big red mushroom” from southern China. PLoS One, 5(5):10684
38
Liu JK, Hyde KD, Gareth JEB, Ariyawansa HA, Bhat DJ , et al., 2015. Fungal diversity notes 1-110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity, 72(1):1-197
39
Looney BP, Ryberg M, Hampe F, Sanchez-Garcia M, Matheny PB , 2016. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology, 25(2):630-647
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.
40
Moser M , 1983. Keys to agarics and boleti. Roger Phillips, London. 1-535
41
Nuytinck J, Verbeken A , 2005. Morphology and taxonomy of the European species in Lactarius sect. Deliciosi (Russulales). Mycotaxon, 92:125-168
42
Nuytinck J, Verbeken A, Saar I, Lambert H, Berube J, Voitk A , 2017. Lactarius splendens, a second species with white latex in Lactarius section Deliciosi. Botany, 95:859-863
43
Nuytinck J , 2004. Lactarius section Deliciosi (Russulales, Basidiomycota) and its ectomycorrhiza: a morphological and molecular approach. PhD Dissertation, Ghent University. 1-257
44
Nuytinck J, Verbeken A, Delarue S, Walleyn R , 2004. Systematics of European sequestrate lactarioid Russulaceae with spiny spore ornamentation. Belgian Journal of Botany, 136(2):145-153
45
Nuytinck J, Verbeken A, Miller SL , 2007. Worldwide phylogeny of Lactarius section Deliciosi inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 99:820-832
A phylogenetic analysis of Lactarius sect. Deliciosi was performed based on collections of all known species. Several samples of each species were included, originating from a wide geographic range. The two DNA regions we used (ITS and a part of the gene encoding glyceraldehyde-3-phosphate dehydrogenase) showed an incongruent phylogenetic signal. Much attention was paid to carefully observed macro- and micromorphological characters to draw taxonomic conclusions. We currently accept 38 taxa (31 species and seven varieties) in Lactarius sect. Deliciosi worldwide; four species are new to science. More sampling is needed to resolve the status of the North American varieties. Our knowledge of the Asian species in this section remains fragmentary. The monophyly of the section and its position within Lactarius subgenus Piperites, as proposed in recent morphology-based classification schemes, is confirmed. The intrasectional relationships however do not coincide with the color of the latex (as previously supposed). Intercontinental conspecificity is low in general. The name L. deliciosus is wrongfully applied in North and Central America and only two species seem to occur in both Asia and Europe.
46
Nuytinck J, Ammirati JF , 2014. A new species of Lactarius sect. Deliciosi (Russulales, Basidiomycota) from western North America. Botany, 92:767-774
Although Lactarius sect. Deliciosi (Fr.) Redeuilh, Verbeken & Walleyn (syn. Lactarius sect. Dapetes) is a readily identifiable group in the field, it is exceedingly difficult to correctly identify species with orange to reddish orange latex. A lack of careful study of these species in North America in general, and the Pacific Northwest more specifically, makes species identification often impossible. One common undescribed Pacific Northwest species, which begins fruiting rather early in the season, is described here as Lactarius aestivus sp. nov. It is found in conifer forests dominated by Abies Mill. and Tsuga Carriere, and is characterized by bright orange latex and zonate, bright to pale orange pileus that only rarely stains greenish. A phylogenetic analysis based on ITS sequences supports the species delimitation.
47
Park MS, Lee H, Oh SY, Jung PE, Seok SJ, Fong JJ, Lim YW , 2014. Species delimitation of three species within the Russula subgenus Compacta in Korea: R. eccentrica, R. nigricans, and R. subnigricans. Journal of Microbiology, 52(8):631-638
Distinguishing individual Russula species can be very difficult due to extensive phenotypic plasticity and obscure morphological and anatomical discontinuities. In this study, we use the internal transcribed spacer (ITS) and 28S nuclear ribosomal large subunit (LSU) markers to identify and study the genetic diversity of species in the Russula subgenus Compacta in Korea. We focus on two morphologically similar species that are often misidentified for each other: R. nigricans and R. subnigricans. Based on molecular phylogenetic analyses, we identify three subgroups of R. nigricans, with two from Asia and one from Europe/North America. Surprisingly, we find Korean R subnigricans are more closely related to R. eccentrica from North America than the type specimen of R. subnigricans from Japan. These molecular data, along with habitat data, reveal that Korean R. subnigricans had previously been misdassified and should now be recognized as R. eccentrica. Both ITS and LSU exhibit high interspecific and low intraspecific variation for R. eccentrica, R. nigricans, and R. subnigricans. These markers provide enough resolutional power to differentiate these species and uncover phylogeographic structure, and will be powerful tools for future ecological studies of Russula.
48
Redeuilh G, Verbeken A, Walleyn R , 2001. Étude nomenclaturale des taxons infrageneriques dans le genre Lactarius (Basidiomycota, Russulaceae). Mycotaxon, 77:127-143
49
Roussel HFA , 1806. Flore du Calvados et terrains adjacents, composee suivant la methode de Jussieu. L. -[J]. Poisson, Caen. 1-372
50
Shaffer R , 1962. The subsection Compactae of Russula. Brittonia, 14(3):254-284
51
Shimono Y, Hiroi M, Takamatsu S , 2014. The phylogeny of Russula section Compactae inferred from the nucleotide sequence of the rDNA large subunit and ITS regions. Bulletin Graduate School of Bioresources, Mie University, 40:65-75
52
Singer R , 1986. The Agaricales in modern taxonomy. 4th ed. Koeltz Scientific Books, Koenigstein. 1-981
53
Song Y, Buyck B, Li JW, Yuan F, Zhang ZW, Qiu LH , 2018. Two novel and a forgotten Russula species in sect. Ingratae (Russulales) from Dinghushan Biosphere Reserve in southern China. Cryptogamie Mycologie, 39(3):341-357
54
Stubbe D, Nuytinck J, Verbeken A , 2010. Critical assessment of the Lactarius gerardii species complex (Russulales). Fungal Biology, 114(2-3):271-283
This paper investigates species delimitation within the Lactarius gerardii species complex and explores its taxonomic and geographical extent. A combined molecular phylogeny based on ITS, LSU and rpb2 gene sequences is constructed and morphological characters are evaluated. While L. gerardii was originally described from North America, it has later been reported from all over Asia. Therefore a worldwide sampling range was aimed at, including species exhibiting morphological affinities with L. gerardii. The phylogenetic analyses indicate that intercontinental conspecificity in L. gerardii is absent. Thirty strongly supported clades are retrieved of which 18 are morphologically identifiable species. The group is elevated to Lactarius subg. Gerardii stat. nov. It includes, apart from L. gerardii s.l., L. atrovelutinus, L. bicolor, L. ochrogalactus, L. petersenii, L. reticulatovenosus, L. sepiaceus, L. subgerardii and L. wirrabara, as well as the pleurotoid L. uyedae. The paraphyletic nature of the genus Lactarius is confirmed. Lactarius subg. Gerardii appears not affiliated with L. subg. Plinthogalus and this can be substantiated morphologically. No representatives are known from Europe, Africa or South America. The high frequency of intercontinental sister relationships observed between America, Asia and the Australian region, suggests multiple migration and speciation events have occurred across continents.
55
Stubbe D, Wang XH, Verbeken A , 2012. New combinations in Lactifluus. 2. L. subgenus Gerardii. Mycotaxon, 119:483-485
In this second of a series of three papers, new combinations in the genus Lactifluus are proposed. This paper treats Lactarius subg. Gerardii (proposed here as new combination in Lactifluus). In this subgenus 17 combinations at species level are proposed.
56
Tibpromma S, Kevin D, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK , et al., 2017. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 83:1-261
57
van de Putte K, Nuytinck J, Das K, Verbeken A , 2012. Exposing hidden diversity by concordant genealogies and morphology-a study of the Lactifluus volemus (Russulales) species complex in Sikkim Himalaya (India). Fungal Diversity, 55(1):171-194
Although Sikkim belongs to one of the Global Biodiversity Hotspots, little is known about its ectomycorrhizal fungi, and even less about the main genera of Russulales, i.e. Lactarius, Lactifluus, Multifurca and Russula. Combining a multilocus genealogical and morphological study, we aimed to document the diversity within Lactifluus volemus sensu lato of Sikkim Himalaya. We compared nuclear ITS and LSU rDNA, nuclear rpb1 and rpb2 protein-coding, and mitochondrial atp6 protein-coding genealogies to determine species boundaries. Interspecific relationships were inferred from the combined dataset. Bayesian and maximum likelihood single-locus genealogies are concordant and support recognition of six species. Three of these could be identified by unique morphological characteristics and are described as new species: L. dissitus, L. leptomerus and L. versiformis.
58
van de Putte K, Nuytinck J, Stubbe D, Le HT, Verbeken A , 2010. Lactarius volemus sensu lato (Russulales) from northern Thailand: morphological and phylogenetic species concepts explored. Fungal Diversity, 45:99-130
Lactarius volemus (Fr.: Fr.) Fr. is a well known and morphologically easily recognizable milkcap of the Northern hemisphere, forming ectomycorrhiza with both deciduous and coniferous trees. It was originally described from Europe, but is also reported in other continents. Although it is characterized by several unique macro- and micromorphological features, substantial variation in colour, lamellae spacing and changing and staining of the latex has been recorded and it is therefore considered as a putatively unresolved species complex. This study explores the concordance between morphological and phylogenetic species concepts within L. volemus sensu lato of northern Thailand, combining a critical morphological scrutiny with a multiple gene genealogy based on LSU, ITS and rpb2 nuclear sequences. Twelve strongly supported monophyletic clades and six terminal branches are discernable in all phylogenetic trees and represent 18 phylogenetic species. Six of the monophyletic clades can be morphologically distinguished and are described as new species: L. acicularis, L. crocatus, L. distantifolius, L. longipilus, L. pinguis and L. vitellinus. Five other clades also show some morphological differences, but these are too subtle and do not allow for a clear-cut species delimitation without the corroboration of molecular data. Lactarius volemus sensu lato of northern Thailand is therefore still considered as a partially cryptic species complex. Pleurolamprocystidia, pileipellis hairs and to a lesser degree also pileus colour are important diagnostic characteristics. Spore morphology, latex discoloration and pileus surface texture are less useful as diagnostic features. Whether this rich diversity is the result of in situ Pleistocene survival or post-glacial expansion and subsequent radiation, has yet to be revealed.
59
van de Putte K, Nuytinck J, de Crop E, Verbeken A , 2016. Lactifluus volemus in Europe: three species in one - revealed by a multilocus genealogical approach, Bayesian species delimitation and morphology. Fungal Biology, 120:1-25
This study provides morphological and molecular evidence (from nuclear ITS, LSU, and rpb2 DNA sequences) for three previously unrecognized species within the morphospecies Lactifluus volemus from Europe. Phylogenetic species are supported by both a multi-locus tree-based method and Bayesian species delimitation. Lactifluus volemus and Lactifluus oedematopus are provided with a new description, and a third species, Lactifluus subvolemus, is described as new to science. Lactifluus oedematopus can be easily recognized by its short pileipellis hairs. Both L. volemus and L. subvolemus have longer pileipellis hairs and can only be distinguished from each other based on cap colour. Intermediary colour forms, however, occur as well, and cannot be identified as either L. volemus or L. subvolemus without molecular data. Revealing that L. volemus--already considered extinct in the Netherlands and the Belgian Flemish region, and declining in other European countries--is actually a complex of three species that are even more vulnerable to extinction, this study emphasizes the fundamental role of taxonomy in species conservation.
60
Verbeken A, Nuytinck J , 2013. Not every milkcap is a Lactarius. Scripta Botanica Belgica, 51:162-168
61
Verbeken A, Walleyn R , 1999. Studies in tropical African Lactarius species 7. A synopsis of the section Edules and a review on the edible species. Belgian Journal of Botany, 132(2):175-184
62
Verbeken A, Walleyn R , 2012. Monograph of Lactarius in tropical Africa. Fungus flora of tropical Africa. Vol. 2. National Botanic Garden of Belgium, Brussels. 1-161
63
Verbeken A, Nuytinck J, Buyck B , 2012a. New combinations in Lactifluus. 1. L. subgenera Edules, Lactariopsis, and Russulopsis. Mycotaxon, 118:447-453
64
Verbeken A, Bougher NL, Halling R , 2002. Lactarius (Basidiomycota, Russulaceae) in Papua New Guinea. 3. Two new Lactarius species in subgenus Plinthogali. Australian Systematic Botany, 15(6):765-771
65
Wang J, Buyck B, Wang XH, Bau T , 2019. Visiting Russula (Russulaceae, Russulales) with samples from southwestern China finds one new subsection of R. subg. Heterophyllidia with two new species. Mycological Progress, 18:771-784
66
Wang XH , 2007. Type studies on the Lactarius species published from China. Mycologia, 99(2):253-268
摘要
Thirteen species and one variety of the genus Lactarius (Russulaceae, Russulales) have been published from China. Since the original descriptions and illustrations are often poor, it is difficult to understand the concepts of these taxa. Therefore, the type specimens of all these taxa were traced, reviewed and (or) re-examined by employing modern taxonomic methods. The type collections of L. atrosquamulosus and L. omeiensis could not be found. The type collection of L. minimus var. macrosporus was found to consist of mixed material belonging to two different species and a lectotype, which belongs to Lactarius subgen. Russularia, sect. Olentes was designated. Lactarius squamulosus turned out to be a synonym of L. gracilis and L. wangii was synonymized here with L. volemus. Except for L. wangii, the others were known only from China or Asia. In total, ten taxa were provided with modern or new macromorphological descriptions based on the dried basidiocarps and with illustrations of basidiospores, pleuromacrocystidia, pileipellis and (or) stipitipellis. As a result of this re-examination, the differences between these taxa and their closely related taxa were discussed and their taxonomic positions in four contemporary infrageneric classification systems of Lactarius were proposed. Based on recent conspecific collections, information on habitats and geographical distribution of some species was provided.
67
Wang XH , 2016. Three new species of Lactarius sect. Deliciosi from subalpine-alpine regions of central and southwestern China. Cryptogamie Mycologie, 37:493-508
68
Wang XH , 2017. Two new species of Lactarius subg. Russularia from subalpine regions of southwestern China. Journal of Fungal Research, 15(4):222-228
69
Wang XH , 2018. Fungal biodiversity profiles 71-80. Cryptogamie Mycologie, 39(4):419-445
70
Wang XH, Buyck B, Verbeken A, Hansen K , 2015a. Revisiting the morphology and phylogeny of Lactifluus with three new lineages from southern China. Mycologia, 107(5):941-958
As a recent group mainly defined by molecular data the genus Lactifluus is in need of further study to provide insight into the morphological and molecular variation within the genus, species limits and relationships. Phylogenetic analyses of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1 and D2 domains of nuc 28S rDNA (28S), and part of the second largest subunit of the RNA polymerase II (rpb2) (6-7 region) sequences of 28 samples from southern China revealed three new lineages of Lactifluus. Two of them are nested in a major clade that includes the type of Lactifluus and here is treated as two new sections: L. sect. Ambicystidiati and L. sect. Tenuicystidiati. Lactifluus ambicystidiatus, described here as a new species (= sect. Ambicystidiati), has both lamprocystidia and macrocystidia in the hymenium, a unique combination of features within Russulaceae. Furthermore, only remnants of lactiferous hyphae are present in L. ambicystidiatus and our results suggest that the ability to form a lactiferous system has been lost in this lineage. Lactifluus sect. Tenuicystidiati forms a strongly supported monophyletic group as a sister lineage to L. sect. Lactifluus. We recognize it based on the thin-walled macrocystidia and smaller ellipsoid spores with an incomplete reticulum compared with L. sect. Lactifluus. The former placement of L. tenuicystidiatus in the African L. sect. Pseudogymnocarpi is not supported. Using genealogical concordance we recognize five phylogenetic species within L. sect. Tenuicystidiati and describe two of these as new, L. subpruinosus and L. tropicosinicus. The third lineage, represented by L. leoninus, forms a sister group to L. subg. Lactariopsis sensu stricto. The three lineages provide further evidence for morphological features in Lactifluus being homoplasious. Some sections and species complexes are likely to be composed of more species and merit further investigations. Subtropical-tropical Asia is likely a key region for additional sampling.
71
Wang XH, Halling RE, Hofstetter V, Lebel T, Buyck B , 2018. Phylogeny, biogeography and taxonomic reassessment of Multifurca (Russulaceae, Russulales) using three-locus data. PLoS One, 13(1):e0205840
72
Wang XH, Liu PG , 2002. Resources investigation and studies on the wild commercial fungi in Yunnan. Biodiversity Science, 10(3):318-325 (in Chinese)
摘要
Yunnan is an area rich in wild commercial fungi resources, namely, fungi sold in markets. Much attention has been paid to fungal resources in the past. However, comprehensive investigation and studies on the resources were wanting. Through investigation, collection and identification of species, the geographical distribution patterns, seasonal changes and ranking based on the trade volume and the economic value of the resources were documented continuously from 1997 to 2001. In total, 207 species (including varieties and forms) belonging to 64 genera are recognized, showing high diversity and high endemicity. Among the species, those of the genera Boletus, Tricholoma, Termitomyces, Thelephora, Russula, Lactarius, and Ramaria are main commercial fungi. Despite artificial selection, commercial fungi show obvious geographical distribution patterns: southern Yunnan is rich in tropical species and northwestern Yunnan is rich in temperate alpine and subalpine species. Central and southwestern Yunnan fungal communities display subtropical and temperate characters. Each area possesses its own typical species and they are related by some transitional ones. We ranked the commercial fungi species in the order of trade volume. Those of grade I and II are the dominant species. Almost 90% of the commercial fungi are edible and about 5% are medicinal, while 7% are poisonous. The economic value of each species is also provided.
73
Wang XH, Nuytinck J, Verbeken A , 2015b. Lactarius vividus sp. nov. (Russulaceae, Russulales), a widely distributed edible mushroom in central and southern China. Phytotaxa, 231(1):63-72
74
Wang XH, Verbeken A , 2006. Three new species of Lactarius subgen. Lactiflui. Nova Hedwigia, 83(1-2):167-176
75
Wang XH, Yang ZL, Li YC, Knudsen H, Liu PG , 2009. Russula griseocarnosa sp. nov. (Russulaceae, Russulales), a commercially important edible mushroom in tropical China: mycorrhiza, phylogenetic position, and taxonomy. Nova Hedwigia, 88(1-2):269-282
76
Wang XH, Yu FQ, Liu PG , 2004. Color Atlas of wild commercial mushrooms in Yunnan. Yunnan Science and Technology Press, Kunming. 1-136
77
Wisitrassameewong K, Looney BP, Le HT, de Crop E, Das K, van de Putte K, Eberhardt U, Guo JY, Stubbe D, Hyde KD, Verbeken A, Nuytinck J , 2016. Lactarius subgenus Russularia (Basidiomycota, Russulales): novel Asian species, worldwide phylogeny and evolutionary relationships. Fungal Biology, 120(12):1554-1581
78
Wisitrassameewong K, Nuytinck J, Le HT, de Crop E, Hampe F, Hyde KD, Verbeken A , 2015. Lactarius subgenus Russularia (Russulaceae) in South-East Asia: 3. new diversity in Thailand and Vietnam. Phytotaxa, 207(3):215-241
79
Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC , 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98(1):1-76
80
Ying JZ, Zang M (eds.), 1994. Economic macrofungi from Southwestern China. Science Press, Beijing. 1-399(in Chinese)
81
Zhang JB, Li JW, Li F, Qiu LH , 2017. Russula dinghuensis sp. nov. and R. subpallidirosea sp. nov., two new species from southern China supported by morphological and molecular evidence. Cryptogamie Mycologie, 38(2):191-203
82
Zhao Q, Li YK, Zhu XT, Zhao YC, Liang JF , 2015. Russula nigrovirens sp. nov. (Russulaceae) from southwestern China. Phytotaxa, 236(3):249-256
83
陈言柳, 刘萌, 张林平, 苏明声, 吴斐 , 2019, 中国乳菇属真菌一新记录种-思茅乳菇. 河南农业科学, 48(1):105-109,152
84
陈作红, 杨祝良, 图力古尔, 李泰辉 , 2016. 毒蘑菇识别与中毒防治. 北京: 科学出版社. 1-308
85
李国杰, 李赛飞, 文华安 , 2010. 中国红菇属物种资源经济价值. 食用菌学报, 2010(增刊):155-160
86
李国杰, 李赛飞, 赵东, 文华安 , 2015. 红菇属研究进展. 菌物学报, 34(5):821-848
87
王向华, 刘培贵 , 2002. 云南野生贸易真菌资源调查及研究. 生物多样性, 10(3):318-325
野生贸易真菌即市场上出售的野生真菌,云南的野生贸易真菌资源十分丰富且长期以来受到关注。但以往对于这一资源的全面调查和研究较为缺乏。本项目通过市场调查、标本采集和鉴定,自1997~2001年连续4年对云南野生贸易真菌从种类、地理分布、季节变化、基于贸易量的优势度评价和经济价值5方面进行研究。云南野生贸易真菌已知共64属207种(含变种、变型),以担子菌中的牛肝菌属(Boletus)、口蘑属(Tricholoma)、鸡土从菌属(Termitomyces)、革菌属(Thelephora)、红菇属(Russula)、乳菇属(Lactarius)、丛枝瑚属(Ramaria)为主,表现出较高的多样性和较强的地区特有性。尽管具有人为选择的因素,但云南野生贸易真菌仍表现出较强的地理分布特异性:滇南地区包含较多的热带种类,具有较强的热带性质,而滇西北则具有较强的温带高山、亚高山性质,滇中、滇西南等地表现出亚热带和温带的过渡特征。以上各地区既有各自的代表种类,又通过某些过渡类群存在一定的联系。根据各个种贸易量的相对大小即优势度将贸易真菌分为4个等级,其中的优势Ⅰ级和优势Ⅱ级为主导种类。云南贸易真菌中约近90%的种类为食用菌,5%为药用菌,另有约7%为有毒种类。对每一种贸易真菌的经济价值给予了评价。
88
王向华, 于富强, 刘培贵 , 2004. 云南野生商品蘑菇图鉴. 昆明: 云南科技出版社. 1-136
89
应建浙, 臧穆( 主编 ), 1994. 西南地区大型经济真菌. 北京: 科学出版社. 1-399

基金

国家自然科学基金(30300002)
国家自然科学基金(30970020)
国家自然科学基金(31770031)
国家自然科学基金(31093440)
中国科学院东亚植物多样性与生物地理学重点实验室开放课题(LPB201501)
环境保护部生物多样性调查评估项目(2019HJ2096001006)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(6422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/