
不同光质光照对香菇子实体农艺性状与质构品质的影响
Effects of illumination of different lights on agronomic traits and texture quality of fruiting bodies of Lentinula edodes
香菇Lentinula edodes是世界第一大食药用真菌,随着香菇工厂化生产逐渐规模化、周年化、标准化,香菇工厂对环境集约化及智能化控制的要求也越来越高。光照是香菇生长发育过程中重要的环境因素,本研究将转色后的香菇菌棒分别置于红光(R)、绿光(G)、蓝光(B)、红绿光(RG)、红蓝光(RB)、绿蓝光(GB)、红绿蓝光(RGB)7种光线下照射培养,以黑暗处理(CK)的香菇菌棒作为对照,探究不同光质光照对香菇子实体农艺性状与质构品质的影响。结果表明:红绿蓝光照射下单个菌棒蕾数最多,为24.33个,黑暗处理下蕾数最少,16.17个;蓝光和红绿蓝光照射下子实体产量较高,达到228.12g/棒和220.82g/棒;红光条件下子实体产量最低,为173.53g/棒。不同光质光照对香菇子实体的形态特征有影响,红光和黑暗环境会影响子实体菌盖和菌柄的颜色,使其颜色偏淡,色彩饱和度增加,并且促使菌柄的生长。绿光和蓝光照射下子实体农艺性状和质构品质好。本研究表明蓝光可以作为香菇工厂化生产出菇阶段的首选光质。
With the growth of industrialized, cyclical and standardized production of Lentinula edodes, the requirement of environmental intensification and intelligent control in production process is increased by a big margin. Light is an important environmental factor in the growth and development of L. edodes. In this study, after mycelial pigmentation stage, L. edodes growing on cultivated logs was exposed to seven kinds of light, red light (R), green light (G), blue light (B), red-green light (RG), red-blue light (RB), green-blue light (GB), and red-green-blue light (RGB), and dark was treated as control, to explore the effects of different light illumination on the agronomic traits and texture quality of L. edodes fruiting body. The results showed that the number of fruiting bodies on single cultivated log under RGB was maximum, averagely 24.33 per log, while CK was the least (16.17). The fruiting body yield under B and RGB treatment was 228.12g and 220.82g respectively per cultivated log. Under R illumination, the yield was lowest, 173.53g per cultivated log. Red light and dark environment affects the coloration of the pileus and stipe, makes the pileus and stipe light-colored, increasing color saturation and promoting the growth of stipe. The agronomic traits and texture quality of L. edodes fruiting body under green and blue light irradiation were fine. The results indicated that blue light was preferable for L. edodes production at fruiting stage.
香菇 / 光质 / 农艺性状 / 质构品质 {{custom_keyword}} /
Lentinula edodes / light illumination / agronomic traits / texture quality {{custom_keyword}} /
表1 分子对接所使用的受体Table 1 Receptors used for molecular docking |
PDB ID | 缩写 Abbreviation | 名称 Name | 功能 Function |
---|---|---|---|
2XOW | p53 | p53蛋白 p53 protein | 防止癌变,修复缺陷 Prevent cancer and repair defects |
IYSI | Bcl-xl | 抗凋亡蛋白 Anti-apoptotic proteins | 阻止凋亡 Prevent apoptosis |
5HG5 | EGFR | 表皮生长因子受体 Epidermal growth factor receptor | 加速促进细胞异常生长和分裂,最终导致肿瘤诞生 Accelerate the abnormal growth and division of cells, and eventually lead to the birth of tumors |
1M48 | IL-2 | 白细胞介素-2 Interleukin-2 | 促进淋巴细胞生长、增殖、分化,能诱导和增强细胞毒活性 Promote the growth, proliferation and differentiation of lymphocyte, induce and enhance cytotoxic activity |
1Y6B | VEGFR2 | 血管内皮细胞生长因子受体2 Vascular endothelial growth factor receptor 2 | 调节淋巴管内皮细胞和血管内皮细胞,促进淋巴管和血管的生成,还有调节淋巴细胞的迁移等作用 Regulate lymphatic endothelial cells and vascular endothelial cells, promote the production of lymphatic vessels and blood vessels, and regulate the migration of lymphocytes, etc. |
图1 不同类型羊毛甾烷型三萜化合物的结构通式Fig. 1 General structural formula of lanostane triterpenes with different types. |
表2 灵芝子实体酸性三萜化合物对L1210细胞增殖的抑制作用Table 2 Inhibition of acidic triterpenes from fruiting bodies of Ganoderma lingzhi to L1210 cell proliferation |
灵芝子实体酸性三萜 Acidic triterpenes from fruiting bodies of G. lingzhi | 母环 Female ring | R1 | R2 | R3 | R4 | R5 | R6 | R7 | IC50 (μmol/L) |
---|---|---|---|---|---|---|---|---|---|
Ganoderic acid I | A | β-OH | β-OH | =O | -H | =O | β-OH | =O | 39.54 |
Ganoderic acid ε | A | β-OH | β-OH | =O | -H | =O | -H | β-OH | - |
Ganoderenic acid C | B | β-OH | β-OH | =O | -H | α-OH | =O | - | - |
Ganoderic acid C2 | A | β-OH | β-OH | =O | -H | α-OH | -H | =O | 520.54 |
Ganoderic acid C6 | A | β-OH | =O | =O | β-OH | =O | -H | =O | 2 793.27 |
Ganoderic acid G | A | β-OH | β-OH | =O | β-OH | =O | -H | =O | 58.26 |
Ganoderic acid B | A | β-OH | β-OH | =O | -H | =O | -H | =O | 77.32 |
Ganoderenic acid B | B | β-OH | β-OH | =O | -H | =O | =O | - | 58.81 |
Ganoderenic acid A | B | =O | β-OH | =O | -H | α-OH | =O | - | 351.85 |
Ganoderic acid A | A | =O | β-OH | =O | -H | α-OH | -H | =O | 104.19 |
Ganoderic acid K | A | β-OH | β-OH | =O | β-OAc | =O | -H | =O | 116.97 |
Ganoderenic acid E | B | =O | β-OH | =O | β-OH | =O | =O | 135.46 | |
Ganoderic acid H | A | β-OH | =O | =O | β-OH | =O | -H | =O | 417.07 |
Ganoderenic acid H | B | β-OH | =O | =O | -H | =O | =O | - | 108.75 |
Lucidenic acid A | - | - | - | - | - | - | - | - | 103.41 |
Ganoderic acid N | A | =O | β-OH | =O | -H | =O | -H | =O | - |
Ganoderic acid D | A | =O | β-OH | =O | -H | =O | -H | =O | 3.67 |
Ganoderenic acid D | B | =O | β-OH | =O | -H | =O | =O | 27 094.48 | |
Ganoderic acid Z | C | β-OH | =O | =O | -H | -H | 2 289.44 | ||
Ganoderic acid F | A | =O | =O | =O | β-OAc | =O | -H | =O | 265.35 |
Ganoderenic acid F | B | =O | =O | =O | -H | =O | =O | - | 72.91 |
Ganoderic acid DM | C | =O | =O | -H | -H | -H | - | - | 75.48 |
Ganoderic acid Y | D | β-OH | -H | - | - | - | - | - | - |
Ganoderic acid TN | D | β-OH | β-OAc | - | - | - | - | - | 57.75 |
注:“-”表示在受试浓度下化合物对L1210无作用,下同 | |
Note: “-” indicates that the compound has no effect on L1210 at the tested concentration, the same below. |
表3 灵芝子实体中性三萜化合物对L1210细胞增殖的抑制作用Table 3 Inhibition of neutral triterpenes from fruiting bodies of Ganoderma lingzhi to L1210 cell proliferation |
灵芝子实体中性三萜 Neutral triterpenes from fruiting bodies of G. lingzhi | 母环 Female ring | R1 | R2 | R3 | R4 | IC50 (μmol/L) |
---|---|---|---|---|---|---|
Ganodermanontriol | F | =O | α-OH | -CH2OH | β-OH | 51.05 |
Ganoderiol A | F | β-OH | -OH | -CH2OH | -OH | 30.30 |
Ganodermanondiol | F | =O | α-OH | -CH3 | -OH | 137.38 |
Ganoderiol F | E | =O | -CH2OH | -CH2OH | - | 147.92 |
Ganoderol A | E | =O | -CH3 | -CH2OH | - | 65.21 |
Ganoderal A | E | =O | -CH3 | -CHO | - | 28.44 |
Ganoderol B | E | β-OH | -CH3 | -CH2OH | - | 54.28 |
表4 灵芝菌丝体三萜化合物对L1210细胞增殖的抑制作用Table 4 Inhibition of triterpenes from mycelia of Ganoderma lingzhi to L1210 cell proliferation |
灵芝菌丝体三萜 Mycelial triterpenes | 母环 Female ring | R1 | R2 | R3 | IC50 (μmol/L) |
---|---|---|---|---|---|
Ganoderic acid T | G | α-OAc | α-OAc | β-OAc | 1.92 |
Ganoderic acid S | G | α-OH | -H | β-OAc | 19.33 |
Ganoderic acid P | G | α-OH | α-OAc | β-OAc | 26.66 |
Ganoderic acid T1 | G | α-OAc | α-OAc | β-OH | 21.12 |
Ganoderic acid Mk | G | α-OAc | α-OH | β-OAc | 16.71 |
Ganoderic acid Me | G | α-OAc | α-OAc | -H | 9.66 |
Lanosta-7,9(11),24-trien-3α-hydroxy-26-oic acid | G | α-OH | -H | -H | 29.97 |
Ganoderic acid R | G | α-OAc | -H | β-OAc | 31.69 |
表5 层迭树舌子实体三萜化合物对L1210细胞增殖的抑制作用Table 5 Inhibition of triterpenes from fruiting bodies of Ganoderma lobatum to L1210 cell proliferation |
树舌环氧酸三萜 Applanoxidic acids | 母环 Female ring | R1 | R2 | R3 | R4 | IC50 (μmol/L) |
---|---|---|---|---|---|---|
Applanoxidic acid H | H | β-OH | α-OH | =O | -OH | 10 083.46 |
Applanoxidic acid A | I | =O | =O | α-OH | - | 272.52 |
Applanoxidic acid G | H | =O | =O | β-OH | -OH | 3 477.67 |
Applanoxidic acid C | H | =O | =O | =O | -OH | 1 507.38 |
Applanoxidic acid E | I | =O | =O | β-OH | - | 84.64 |
Applanoxidic acid F | I | =O | =O | =O | - | 166.01 |
表6 配体与靶蛋白对接Table 6 Docking of ligand to target protein |
配体 Ligand | p53 | Bcl-xl | EGFR | IL-2 | VEGFR2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Poses | Score | Poses | Score | Poses | Score | Poses | Score | Poses | Score | |
Ganoderic acid P | 10 | 115.52 | 10 | 142.42 | 5 | 123.16 | 5 | 118.39 | 10 | 133.25 |
Ganoderma acid T1 | 3 | 106.89 | 10 | 140.52 | 22 | 111.43 | 1 | 102.88 | 10 | 135.49 |
Ganoderic acid S | 6 | 113.64 | 10 | 131.19 | 3 | 119.55 | 10 | 145.95 | 10 | 123.33 |
Ganoderic acid T | 10 | 119.76 | 10 | 152.44 | 4 | 132.70 | 2 | 116.23 | 10 | 126.43 |
Ganoderic acid Me | 10 | 112.97 | 10 | 141.92 | 3 | 105.81 | 10 | 115.93 | 10 | 131.55 |
Ganoderic acid R | 10 | 112.53 | 10 | 142.54 | 2 | 121.23 | 10 | 142.28 | 10 | 125.44 |
Ganoderic acid Mk | 2 | 104.29 | 10 | 136.51 | - | - | 9 | 127.94 | 10 | 127.44 |
Lanosta-7,9(11),24-trien-3α-hydroxy-26-oic acid | 2 | 108.04 | 10 | 129.37 | 2 | 114.60 | 10 | 131.04 | 10 | 118.92 |
Ganoderic acid I | 2 | 113.87 | 10 | 134.51 | - | - | 9 | 119.06 | 5 | 105.76 |
Ganoderic acid D | 2 | 106.48 | 10 | 140.06 | - | - | 10 | 123.40 | 10 | 111.06 |
Ganoderiol A | 1 | 101.96 | 10 | 141.78 | 2 | 122.61 | 10 | 122.90 | 10 | 116.80 |
Ganodera A | 1 | 110.40 | 10 | 129.12 | 3 | 104.15 | 10 | 129.88 | 10 | 107.94 |
注:化合物的众多对接Poses中只给出LibDock打分最高值 | |
Note: Only the highest LibDock score is given among many poses. |
图2 灵芝羊毛甾烷型三萜与靶蛋白分子对接A:Ganoderic acid T与p53蛋白对接;B:Ganoderic acid T与Bcl-xl蛋白对接;C:Ganoderic acid T与EGFR蛋白对接;D:Ganoderic acid S与IL-2蛋白对接;E:Ganoderic acid T1与VEGFR2蛋白对接 Fig. 2 Molecular docking of lanostane triterpenes from Ganoderma spp. to target proteins. A: Docking of ganoderic acid T to p53 protein; B: Docking of ganoderic acid T to Bcl-xl protein; C: Docking of ganoderic acid T to EGFR protein; D: Docking of ganoderic acid S to IL-2 protein; E: Docking of ganoderic acid T1 to VEGFR2 protein. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
陈岗, 詹永, 罗杨, 杨勇, 谢会川, 柴佳炎, 龚胡荣, 2016. 不同LED光质对银耳生长发育的影响. 食品工业科技, 37(23): 156-160
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
段庆虎, 张应香, 龚凤萍, 竹玮, 韩玉玲, 尹川川, 段仁周, 2014. 光对真菌影响的研究进展. 北方园艺, 2014(18): 213-219
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
郭征, 2018. 不同LED光源对秀珍菇生长发育的影响. 安徽农业大学硕士论文, 合肥. 1-31
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
侯占山, 2020. 光照时间与强度对杏鲍菇生长发育及生理的影响. 中国农业科学院硕士论文, 北京. 1-64
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
李巧珍, 杨焱, 周峰, 李玉, 郭力刚, 鲍大鹏, 李正鹏, 2014. 光照对刺芹侧耳子实体形态和产量的影响. 食用菌学报, 21(2): 32-35
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
李玉, 于海龙, 周峰, 王瑞娟, 李正鹏, 郭倩, 2011. 光照对食用菌生长发育影响的研究进展. 食用菌, 33(2): 3-4
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
刘春如, 2001. 香菇的分布概况及生物学特性. 中国林副特产, 2001(4): 32-33
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
刘文科, 杨其长, 2013. 食用菌光生物学及LED应用进展. 科学导报, 31(18): 73-79
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
卢阳阳, 2019. LED光质对香菇胞外酶活性及相关农艺性状的影响研究. 安徽农业大学硕士论文, 合肥. 1-56
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
吕明亮, 李伶俐, 薛振文, 蒋俊, 曾凡清, 应国华, 2020. 香菇‘丽香2号'的选育报告. 菌物学报, 39(6): 1193-1195
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
沈颖越, 宋婷婷, 蔡为明, 范丽军, 2021. 基于质构仪质地多面分析法对香菇质地评价. 菌物学报, 40(5): 1180-1189
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
宋寒冰, 李勇, 黄嘉华, 段静怡, 张祺锶, 谢宝贵, 陶永新, 2020. 不同光质照射下真姬菇的生长发育与光受体的响应表达. 园艺学报, 47(3): 467-476
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
唐利华, 2014. 光诱导香菇菌丝转色形成机理的研究. 上海交通大学博士论文, 上海. 1-152
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
佟希丹, 2012. 不同光质LED对黄白品种金针菇商品性状与产量的影响. 吉林农业大学硕士论文, 长春. 1-34
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
汪勇, 赵洪梅, 2011. 香菇采收和贮藏技术. 吉林农业, 2011(12): 140
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
谢正林, 杨生琴, 谢春芹, 李迪, 许俊齐, 凡军民, 刘念, 2019. LED光源对金针菇工厂化生产影响研究. 中国食用菌, 2019(11): 32-36
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
易琳琳, 应铁进, 2012. 食用菌采后品质劣变相关的生理生化变化. 食品工业科技, 33(24): 434-436+441
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
余昌霞, 李正鹏, 查磊, 赵妍, 陈明杰, 侯立娟, 郭倩, 2021. 不同光质对草菇菌丝生长及子实体性状的影响. 食用菌学报, 28(3): 72-77
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |