杜鹃花科植物菌根的研究进展

张艳华,孙立夫

菌物学报 ›› 2021, Vol. 40 ›› Issue (6) : 1299-1316.

PDF(450 KB)
中文  |  English
PDF(450 KB)
菌物学报 ›› 2021, Vol. 40 ›› Issue (6) : 1299-1316. DOI: 10.13346/j.mycosystema.210077 CSTR: 32115.14.j.mycosystema.210077
综述

杜鹃花科植物菌根的研究进展

作者信息 +

Research advances on the mycorrhizas of Ericaceae plants

Author information +
文章历史 +

摘要

杜鹃花科Ericaceae植物可与土壤真菌形成杜鹃花类菌根ericoid mycorrhizas(ERM)共生体,且广泛分布于全球不同的陆地生态系统,特别是在贫瘠、酸性等严酷的环境中占优势。杜鹃花科植物菌根类型多样,绝大多数宿主具有ERM,还有少量宿主具有其他类型的菌根结构,且常与暗隔内生菌(dark septate endophyte,DSE)并存;ERM的宿主植物除已知的杜鹃花科外,岩梅科Diapensiaceae植物也具有ERM结构;ERM真菌以子囊菌和担子菌为主,主要来自柔膜菌目Helotiales和蜡壳耳目Sebacinales;与杜鹃花科宿主形成ERM的真菌也常与壳斗科Fagaceae、松科Pinaceae等宿主植物形成外生菌根(ectomycorrhiza,ECM)结构;ERM对宿主植物在营养吸收、忍耐贫瘠环境、抵抗重金属污染等能力方面都有积极的促进作用,对环境变化的响应是多样的,生境和季节的变化对ERMF群落的组成和分布有着显著影响,资源比率变化可能改变ERM宿主与其他菌根或非菌根植物之间的竞争关系。本文回顾了近40多年来国内外有关ERM的研究进展,还对ERM研究的前景进行了展望,以期在理论和实践中对杜鹃花科及其菌根的研究能取得更丰硕的成果。

Abstract

Ericaceae plants and soil fungi often form ericoid mycorrhiza (ERM) symbiosis. ERM fungi are distributed widely over different global continental ecosystems, especially dominate in harsh environment with poor and acid soil. The mycorrhizal types of Ericaceae were diverse; apart from ERM, a few other types of mycorrhizae can be found in some ericaceous hosts, and often coexist with dark septate endophyte (DSE). Besides the well-known Ericaceae, ERM structure was also discovered in Diapensiaceae plants. ERM fungi mainly belonged to Ascomycetes and Basidiomycetes, and mostly Helotiales and Sebacinales. ERM fungi often formed ectomycorrhizal (ECM) structures on other hosts such as Fagaceae and Pinaceae. ERM not only helped their hosts on absorbing nutrients, increasing tolerant capacity in poor nutrient habitats, but also enhancing the resistance to heavy metal contamination. The community composition and distribution of ERM fungi showed significant variation with habitats and seasons. The variation of resource ratio might change the competitive relationship between ERM host and other mycorrhizal or non-mycorrhizal plants. In this paper, the advances of researches on ERM and their hosts over the past 40 years were reviewed. Prospect about ERM study was also previewed.

关键词

杜鹃花科植物 / 杜鹃花类菌根 / 菌根真菌 / 多样性

Key words

Ericaceae / ericoid mycorrhiza / mycorrhizal fungi / diversity

引用本文

导出引用
张艳华, 孙立夫. 杜鹃花科植物菌根的研究进展[J]. 菌物学报, 2021, 40(6): 1299-1316 https://doi.org/10.13346/j.mycosystema.210077
ZHANG Yan-Hua, SUN Li-Fu. Research advances on the mycorrhizas of Ericaceae plants[J]. Mycosystema, 2021, 40(6): 1299-1316 https://doi.org/10.13346/j.mycosystema.210077
丛赤壳科Nectriaceae成立于1865年,模式属为丛赤壳属Nectria (Fr.) Fr.。Rossman et al. (1999)根据形态学特征,将广义的丛赤壳类真菌划分为丛赤壳科和生赤壳科Bionectriaceae。丛赤壳科的主要特征包括子座发达或具基部子座,子囊壳肉质,具丛赤壳型中心体,单生至聚生,表生,近球形、球形、倒梨形至椭圆球形,子囊壳颜色鲜艳,KOH+,LA+,子囊壳表面光滑、具疣状物或毛状物,壳壁厚度通常大于25 μm, 子囊圆柱形至柱棒状, 子囊孢子椭圆形至拟纺锤形, 无分隔至具多个分隔,表面平滑、具条纹、小刺或疣状突起,无色至淡黄褐色(Rossman et al. 1999;庄文颖 2013;Lombard et al. 2015)。目前丛赤壳科已知约55属900余种(Lombard et al. 2015),我国累计报道16属100余种(庄文颖 2013; Zeng & Zhuang 2014, 2015, 2016a, 2016b, 2016c, 2017, 2018, 2019, 2020, 2021a, 2021b; Zeng et al. 2018)。 该科真菌主要分布于温带和热带地区,物种多样性丰富,对农林业发展有重要影响,开展资源调查和系统分类研究,将更新对我国种质资源的认识。

1 材料与方法

研究材料主要采自安徽、河南、湖北、云南和西藏等地的自然保护区和森林公园。采用常规研究方法(Rossman et al. 1999),记录子囊壳在3%氢氧化钾(potassium hydroxide,KOH)水溶液和100%乳酸(lactic acid,LA)溶液中的颜色变化。为观察解剖结构特征,将子囊壳置于冷冻切片机YD-1508A(中国金华)上制作厚度约6-8 μm的切片,在解剖镜Olympus SZX7下选取结构完整的切片用乳酚棉兰染色,显微观察其壳壁结构和附属物特征。挑取单个子囊壳制作压片,经乳酚棉兰染色,显微观察子囊和子囊孢子的形状、大小,孢子的颜色、表面纹饰和分隔情况;采用Zeiss Axioskop 2 plus (哥廷根)光学显微镜配备的Canon G5摄像系统拍照。观察菌株在CMD (cornmeal dextrose agar)、PDA (potato dextrose agar)和SNA (synthetic nutrient-poor agar) (Nirenberg 1976)培养基上25 ℃培养7 d的菌落形态,测量菌落直径。
研究标本存放于中国科学院微生物研究所菌物标本馆(herbarium mycologicum academiae sinicae,HMAS),菌种保藏于微生物研究所真菌学国家重点实验室。参照Wang & Zhuang (2004)的方法提取菌丝DNA,使用引物ITS5/ITS4 (White et al. 1990)和LR0R/LR5 (Rehner & Samuels 1994)扩增ITS和LSU序列,获得序列提交至GenBank,使用BioEdit 7.0.5.3 (Hall 1999)进行序列拼接、比对和编辑,运用BLASTN在NCBI (https://www.ncbi.nlm.nih.gov/)数据库进行检索。
本研究综合形态解剖、培养性状、DNA序列和无性阶段等特征,对各标本进行系统分类鉴定。采用最大简约(maximum parsimony,MP)和贝叶斯(Bayesian inference,BI)方法明确其系统发育位置,选取ITS和LSU序列构建系统发育树。进化树中,最大简约分析支持率(bootstrap proportion,BP)大于50%和贝叶斯分析后验概率(posterior probability,PP)大于90%分别显示在各分支节点上。

2 分类

肯达拉赤壳 图1
Cosmospora khandalensis (Thirum. & Sukapure) Gräfenhan & Seifert [as 'khandalense'], in Gräfenhan, Schroers, Nirenberg & Seifert, Stud. Mycol. 68: 96, 2011. Fig. 1
Cephalosporium khandalense Thirum. & Sukapure, in Sukapure & Thirumalachar, Mycologia 58(3): 359, 1966.
图1 肯达拉赤壳 (HMAS 247850)

A-C:25 ℃培养7 d的菌落形态 (A:PDA;B:CMD;C:SNA);D-L:分生孢子梗和分生孢子. 标尺:D-L=10 μm

Fig. 1 Cosmospora khandalensis (HMAS 247850).

A-C: Colonies after 7 d at 25 °C (A: PDA; B: CMD; C: SNA); D-L: Conidiophores and conidia. Bars: D-L=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长7 d菌落直径22-23 mm,表面絮状,气生菌丝致密,白色,产生黄绿色色素;在CMD培养基上,25 ℃生长7 d菌落直径23-24 mm,表面绒毛状,气生菌丝稀疏,白色,产生黄绿色色素;在SNA培养基上,25 ℃生长7 d菌落直径21-23 mm,表面绒毛状,气生菌丝稀疏,白色,产生淡黄绿色色素。无性阶段acremonium型,分生孢子梗无色,不分枝或简单分枝,产孢细胞为单瓶梗,圆柱形,长34-64 μm,基部宽1.5-2.5 μm,顶部宽1.0-1.5 μm;分生孢子卵圆形至椭圆形,末端钝圆,无分隔,无色,表面平滑,2.5-5×1.5-2 μm,末端具黏性,通常聚集成团。
标本:湖北神农架木城哨卡,枯枝上生,2014 Ⅸ 22,郑焕娣、曾昭清、秦文韬、陈凯 10045,HMAS 247850 (ITS、LSU GenBank登录号:OK103798、OK103806)。
世界分布:中国、印度、日本、阿根廷、巴西。
讨论:湖北菌株分离自枯枝,其菌落形态、分生孢子等特征与Sukapure & Thirumalachar (1966)和Herrera et al. (2015)的描述一致。序列分析显示中国材料与产于印度的模式菌株(CBS 356.65) ITS序列仅相差1 bp (522/523),LSU完全相同(796/796)。
翠绿赤壳 图2
Cosmospora viridescens (C. Booth) Gräfenhan & Seifert, in Gräfenhan, Schroers, Nirenberg & Seifert, Stud. Mycol. 68: 96, 2011. Fig. 2
Nectria viridescens C. Booth, Mycol. Papers 73: 89, 1959.
图2 翠绿赤壳 (HMAS 247851)

A-C:25 ℃培养7 d的菌落形态 (A:PDA;B:CMD;C:SNA);D-L:分生孢子梗和分生孢子. 标尺:D-L=10 μm

Fig. 2 Cosmospora viridescens (HMAS 247851).

A-C: Colonies after 7 d at 25 °C (A: PDA; B: CMD; C: SNA); D-L: Conidiophores and conidia. Bars: D-L=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长7 d菌落直径23-24 mm,表面絮状,气生菌丝致密,白色,产生黄色至黄绿色色素;在CMD培养基上,25 ℃生长7 d菌落直径25-26 mm,表面絮状,气生菌丝较稀疏,白色,产生黄绿色色素;在SNA培养基上,25 ℃生长7 d菌落直径25-27 mm,表面绒毛状,气生菌丝稀疏,白色。无性阶段acremonium型,分生孢子梗无色,不分枝或简单分枝,产孢细胞为单瓶梗,圆柱形,长30-68 μm,基部宽1.8-2.5 μm,顶部宽1.0-1.2 μm;分生孢子椭圆形至杆形,末端钝圆,无分隔,无色,表面平滑,3-5×2-3 μm,末端具黏性,少数聚集成团。
标本:西藏米林南伊沟,Ganoderma sp.上生,2016 Ⅸ 13,郑焕娣、曾昭清、王新存、陈凯、张玉博 10806,HMAS 247851 (ITS、LSU GenBank登录号:OK103799、OK103807)。
世界分布:中国、捷克、丹麦、英国。
讨论:西藏菌株的形态特征与Booth (1959)提供的原始描述一致。Gräfenhan et al. (2011)对其形态相近种进行了详细讨论。我国菌株与捷克菌株(CBS 102430)的ITS和LSU序列分别相差2 bp (518/520)和3 bp (785/788),与来自英国的模式菌株(IMI 73377a)相差5 bp (534/539)和6 bp (782/788),将上述差异视为种内变异。这是该种首次在亚洲发现(Herrera et al. 2015)。
剑孢新赤壳 图3
Neocosmospora protoensiformis Sand.-Den. & Crous, in Sandoval-Denis, Lombard & Crous, Persoonia 43: 156, 2019. Fig. 3
Fusarium protoensiforme (Sand.-Den. & Crous) O’Donnell, Geiser, Kasson & T. Aoki, in Aoki, Geiser, Kasson & O'Donnell, Index Fungorum 440: 3, 2020.
图3 剑孢新赤壳 (HMAS 290889)

A-C:自然基物上的子囊壳;D,E:25 ℃培养7 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-I:子囊及子囊孢子;J-L:子囊孢子;M,N:分生孢子梗和小型分生孢子;O:小型分生孢子;P-S:大型分生孢子. 标尺:A-C=1 mm;F=50 μm;G-S=10 μm

Fig. 3 Neocosmospora protoensiformis (HMAS 290889).

A-C: Ascomata on natural substratum; D, E: Colonies after 7 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-I: Asci with ascospores; J-L: Ascospores; M, N: Conidiophores and microconidia; O: Microconidia; P-S: Macroconidia. Bars: A-C=1 mm; F=50 μm; G-S=10 μm.

Full size|PPT slide

无子座;子囊壳单生至群生,表生,球形至梨形,表面具疣状物,乳突较小,干后侧面明显凹陷,新鲜时为鲜红色,干后为深红色,在3% KOH水溶液中呈暗红色,100%乳酸溶液中呈黄色,高274-363 μm,直径216-294 μm;疣状物高4-40 μm,细胞球形至近球形,8-22×6-20 μm;壳壁厚20-50 μm,细胞矩胞组织至角胞组织,5.4-15×2.2-8 μm,胞壁厚1.0-1.5 μm;子囊棒状,顶部简单,无顶环,具8个孢子,43-60×5-10 μm;子囊孢子椭圆形,具1个分隔,分隔处稍缢缩,无色,表面平滑,在子囊中斜向单列排列,10-15× 5-8 μm。
在PDA培养基上,25℃培养7 d菌落直径40 mm,气生菌丝致密,白色;在SNA培养基上,25 ℃培养7 d菌落直径45 mm,白色,气生菌丝稀疏;分生孢子梗简单分枝,锥形、近圆柱形至针形,表面光滑,长22-56 μm,基部宽2-3 μm,顶部宽1-1.5 μm;大型分生孢子镰刀形,通常一端带小弯钩,具4-9个分隔,50-85×4-5 μm;小型分生孢子卵圆形、棒状至椭圆形,不弯曲,具0(-1)个分隔,无色,表面平滑,8-17(-20)×3-5 μm,末端具黏性,少数聚集成团。
标本:云南高黎贡山百花岭,枯树皮上生,2017 Ⅸ 15,张意、郑焕娣、王新存、张玉博 11363,HMAS 290889 (ITS、LSU GenBank登录号:OK103800、OK103808)。
世界分布:中国、委内瑞拉。
讨论:该种可在人工培养基上产生子囊壳,与自然基物上的相比,子囊壳和子囊孢子的大小基本一致,子囊稍大(53-105×8-13.8 μm vs. 43-60× 5-10 μm) (Sandoval-Denis et al. 2019),我国菌株与产自委内瑞拉的模式菌株(NRRL 22178)的ITS序列相差5 bp (518/523),LSU序列完全一致(535/535)。本研究将上述差异处理为种内变异。
罗杰森假赤壳 图4
Pseudocosmospora rogersonii C.S. Herrera & P. Chaverri, Mycologia 105(5): 1299, 2013. Fig. 4
图4 罗杰森假赤壳 (HMAS 247852)

A,B:25 ℃培养14 d的菌落形态 (A:PDA;B:SNA);C-I:分生孢子梗和分生孢子;J,K:分生孢子. 标尺:C-K=10 μm

Fig. 4 Pseudocosmospora rogersonii (HMAS 247852).

A, B: Colonies after 14 d at 25 °C (A: PDA; B: SNA); C-I: Conidiophores and conidia; J, K: Conidia. Bars: C-K=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长14 d菌落直径37 mm,具壳状,粉红至米褐色,背面同色;在SNA培养基上,25 ℃生长14 d菌落直径15 mm,气生菌丝极稀疏,淡粉色。无性阶段acremonium型,分生孢子梗简单,不分枝,圆柱形,朝顶部渐细,无色,长28-95 μm,基部宽1.2-1.5 μm,顶部宽0.8-1 μm。分生孢子矩形、椭圆形至杆状,不分隔,无色,表面平滑,2.5-5×1-1.8 μm。
标本:安徽金寨天堂寨,真菌上生,2011 Ⅷ 24,陈双林、庄文颖、曾昭清、郑焕娣7889,HMAS 247852 (ITS、LSU GenBank登录号:OK103796、OK103804)。
世界分布:中国、美国。
讨论:与Herrera et al. (2013)基于美国材料对该种的描述相比,我国安徽菌株的分生孢子略小(2.5-5×1-1.8 μm vs. 2.9-5.5×1.1-2.6 μm),其他特征相同。菌株7889的ITS (520/520)和LSU (764/764)序列与模式菌株BPI 1107121完全一致。该种在我国发现使其分布范围由北美洲扩展至亚洲。
瘤顶赤壳 图5
Tumenectria laetidisca (Rossman) Salgado & Rossman, in Salgado-Salazar, Rossman & Chaverri, Fungal Diversity 80: 451, 2016. Fig. 5
Nectria laetidisca Rossman, Mycol. Pap. 150: 36, 1983.
=Cylindrocarpon bambusicola Matsush., Matsush. Mycol. Mem. 5: 9. 1987.
图5 瘤顶赤壳 (HMAS 290890)

A-C:自然基物上的子囊壳;D,E:25 ℃培养14 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-K:分生孢子梗和分生孢子;L:厚垣孢子. 标尺:A-C=1 mm;F=50 μm;G-L=10 μm

Fig. 5 Tumenectria laetidisca (HMAS 290890).

A-C: Ascomata on natural substratum; D, E: Colonies after 14 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-K: Conidiophores and conidia; L: Chlamydospores. Bars: A-C=1 mm; F=50 μm; G-L=10 μm.

Full size|PPT slide

无子座;子囊壳单生,表生,球形至近球形,顶部具乳突,高38-75 μm,基部宽50-100 μm,顶部宽30-50 μm,干后不凹陷,新鲜时为鲜红色,干后为深红色,在3% KOH水溶液中呈暗红色,100%乳酸溶液中呈黄色,高225-304 μm,直径206-225 μm;壳壁厚28-48 μm,分2层,外层厚23-41 μm,细胞角胞组织至球胞组织,5-13× 3-8 μm,胞壁厚0.8-1.0 μm;内层厚5-7 μm,细胞矩胞组织,8-15×2.5-3.5 μm,胞壁厚0.6-0.8 μm;子囊和子囊孢子未见。
在PDA培养基上,25 ℃生长14 d菌落直径36 mm,表面絮状,气生菌丝致密,白色,背面产生米黄色至淡黄褐色色素;在SNA培养基上,25 ℃生长14 d菌落直径42 mm,表面绒毛状,气生菌丝稀疏,白色。无性阶段cylindrocarpon型,分生孢子梗无色,产孢细胞圆柱形,18-35×3.5- 5 μm;大型分生孢子圆柱形至纺锤形,中间宽,两端略圆,具3-5个分隔,48-77.1×7.4-10.9 μm;偶见厚垣孢子,球形至近球形,直径5-18 μm,间生或串生。
标本:河南洛阳重渡沟,枯枝上生,2013 Ⅸ 20,郑焕娣、曾昭清、朱兆香8813,HMAS 290890 (ITS、LSU GenBank登录号:OK103797、OK103805)。
世界分布:中国、日本、牙买加。
讨论:该种曾被纳入Nectria,综合形态学特征和分子系统学证据,Salgado-Salazar et al. (2016)以其为模式种建立新属Tumenectria Salgado & Rossman,目前仅包括1个种。河南材料状态不佳,子囊壳数量很少,未观察到子囊和子囊孢子,其无性阶段特征符合Salgado-Salazar et al. (2016)的描述。中国菌株(8813)与日本菌株(CBS 100284)的ITS (478/478)和LSU (797/797)序列完全一致,而与牙买加的模式菌株(CBS 101909)分别相差5 bp (473/478)和0 bp (797/797)。

3 系统发育分析

为了清晰地显示5个中国新记录种的系统发育位置,选择丛赤壳科的7个种14个菌株的ITS和LSU序列,以Stachybotrys chartarum为外群,运用MP和BI方法分别构建系统发育树。结果显示,BI树和MP树的拓扑结构一致,最大简约分析产生的唯一进化树(图6)显示菌株HMAS 247850、247851、290889、247852和290890分别与Cosmospora khandalensisCosmospora viridescensNeocosmospora protoensiformisPseudocosmospora rogersoniiTumenectria laetidisca聚类在一起,从而支持了上述形态学研究的结果。
图6 基于ITS和LSU序列的MP树

粗体显示5个中国新记录种的系统发育位置,MPBP大于50% (左)、BIPP大于90% (右)标注于分支节点上

Fig. 6 Maximum parsimony phylogram reconstructed from the combined sequences of ITS and LSU.

the phylogenetic position of the five Nectriaceae species new to China. MPBP above 50% (left) showing and BIPP above 90% (right) are given respectively.

Full size|PPT slide

参考文献

[1]
Aerts R, 1993. Competition between dominant plant species in heathlands. In: Aerts R, Heil GW (eds.) Heathlands: patterns and processes in a changing environment. Kluwer Academic Publishers, Springer Netherlands. 125-151
[2]
Allen TR, Millar T, Berch SM, Berbee ML, 2003. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytologist, 160:255-272
[3]
Auge RM, 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11:3-42
[4]
Bajwa R, Abuarghub S, Read DJ, 1985. The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytologist, 101:459-467
[5]
Barker CG, Power SA, Bell JNB, Orme CDL, 2004. Effects of habitat management on heathland response to atmospheric nitrogen deposition. Biological Conservation, 120(1):41-52
[6]
Bending GD, Read DJ, 1996. Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biology and Biochemistry, 28:1603-1612
[7]
Bending GD, Read DJ, 1997. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycological Research, 101:1348-1354
[8]
Berch SM, Allen TR, Berbee ML, 2002. Molecular detection, community structure and phylogency of ericoid mycorrhizal fungi. Plant and Soil, 244:55-66
[9]
Berendse F, Aerts R, 1984. Competition between Erica tetralix L. and Molinia cearulea(L.) Moench as affected by the availability of nutrients. Oecologia Plantarum, 5:3-14
[10]
Berendse F, Elberse WTH, 1990. Competition and nutrient availability in heathland and grassland ecosystems. In: Grace J, Tilman D (eds.) Perspectives on plant competition. Academic Press, Florida,Orlando. 93-116
[11]
Berendse F, 1994. Competition between plant populations at low and high nutrient supplies. Oikos, 71:253-260
[12]
Bergero R, Girlanda M, 2002. Soil persistence and biodiversity of ericoid mycorrhizal fungi in the absence of the host plant in a Mediterranean ecosystem. Mycorrhiza, 13:69-75
[13]
Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM, 2000. Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Molecular Ecology, 9:1639-1650
[14]
Bizabani C, Dames J, 2015. Effects of inoculating Lachnum and Cadophora isolates on the growth of Vaccinium corymbosum. Microbiological Research, 181:68-74
[15]
Bobbink R, Heil GW, 1993. Atmospheric deposition of sulphur and nitrogen in heathland ecosystems. In: Aerts R, Heil GW (eds.) Heathlands: patterns and processes in a changing environment. Kluwer Academic Publishers, Springer Netherlands. 25-50
[16]
Bonfante-Fasolo P, 1980. Occurrence of a basidiomycete in living cells of mycorrhizal hair roots ofCalluna vulgaris. Transactions of the British Mycological Society, 75:320-325
[17]
Bougoure DS, Cairney JWG, 2005a. Assemblages of ericoid mycorrhizal and other root-associated fungi fromEpacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environment Microbiology, 7:819-827
[18]
Bougoure DS, Cairney JWG, 2005b. Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environment Microbiology, 7:1743-1754
[19]
Bradley R, Burt AJ, Read DJ, 1981. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 292:335-337
[20]
Bradley R, Burt AJ, Read DJ, 1982. The biology of mycorrhiza in the Ericaceae. Ⅷ. The role of mycorrhizal infection in heavy metal resistance. New Phytologist, 91:197-209
[21]
Brundrett MC, 1991. Mycorrhizas in natural ecosystems. Advances in Ecological Research, 21:171-313
[22]
Brundrett MC, 2006. Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds.) Microbial root endophytes. Springer Berlin Heidelberg, Berlin. 281-298
[23]
Cairney JWG, Burke RM, 1998. Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant and Soil, 205:181-192
[24]
Cairney JWG, Sawyer NA, Sharples JM, Meharg AA, 2000. Intraspecific variation in nitrogen source utilization by isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan. Soil Biology and Biochemistry, 32:1319-1322
[25]
Cairney JWG, Ashford AE, 2002. Tansley review no.135. Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytologist, 154:305-326
[26]
Cairney JWG, Meharg AA, 2003. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. European Journal of Soil Science, 54:735-740
[27]
Cázares E, Trappe JM, Jumpponen A, 2005. Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza, 15(6):405-416
Lyman glacier in the North Cascades Mountains of Washington has a subalpine forefront characterized by a well-developed terminal moraine, inconspicuous successional moraines, fluting, and outwash. These deposits were depleted of symbiotic fungi when first exposed but colonized by them over time after exposure. Four major groups of plant species in this system are (1) mycorrhiza-independent or facultative mycotrophic, (2) dependent on arbuscular mycorrhizae (AM) (3) dependent on ericoid mycorrhiza (ERM) or ectomycorrhizae (EM), and (4) colonized by dark-septate (DS) endophytes. We hypothesized that availability of mycorrhizal propagules was related to the success of mycorrhiza-dependent plants in colonizing new substrates in naturally evolved ecosystems. To test this hypothesis roots samples of 66 plant species were examined for mycorrhizal colonization. The plants were sampled from communities at increasing distances from the glacier terminus to compare the newest communities with successively older ones. Long established, secondary successional dry meadow communities adjacent to the glacier forefront, and nearby high alpine communities were sampled for comparison. DS were common on most plant species on the forefront. Nonmycorrhizal plants predominated in the earlier successional sites, whereas the proportion of mycorrhizal plants generally increased with age of community. AM were present, mostly at low levels, and nearly absent in two sites of the forefront. ERM were present in all species of Ericaceae sampled, and EM in all species of Pinaceae and Salicaceae. Roots of plants in the long established meadow and heath communities adjacent to the forefront and the high alpine community all had one or another of the colonization types, with DS and AM predominating.
[28]
Chambers SM, Curlevski NJA, Cairney JWG, 2008. Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a southeastern Australian sclerophyll forest. FEMS Microbiology Ecology, 65(2):263-270
[29]
Chambers SM, Liu G, Cairney JWG, 2000. ITS rDNA sequence comparison of ericoid mycorrhizal endophytes from Woollsia pungens. Mycological Research, 104:168-174
[30]
Chambers SM, Willianms PG, Seppelt RD, Cairney JWG, 1999. Molecular identification of aHymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica. Mycological Research, 103:286-288
[31]
Chaurasia B, Pandey A, Palni LMS, 2005. Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. Forest Ecology and Management, 207:315-324
[32]
Chen A, Chambers SM, Cairney JWG, 1999. Utilization of organic nitrogen and phosphorus sources by mycorrhizal endophytes of Woollsia pungens (Cav.) F. Muell. (Epacridaceae). Mycorrhiza, 8:181-187
[33]
Colpaert JV, Wevers J, Krznaric E, Adriaensen K, 2011. How metaltolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science, 68:17-24
[34]
Couture M, Fortin JA, Dalpé Y, 1983. Oidiodendron griseum Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp. New Phytologist, 95:375-380
[35]
Currah RS, Tsuneda A, Murakami S, 1993a. Morphology and ecology of Phialocephala fortinii in roots of Rhododendron brachycarpum. Canadian Journal of Botany, 71:1639-1644
[36]
Currah RS, Tsuneda A, Murakami S, 1993b. Conidiogenesis in Oidiodendron periconioides and ultrastructure of ericoid mycorrhizas formed with Rhododendron brachycarpum. Canadian Journal of Botany, 71:1481-1485
[37]
Dalpé Y, 1986. Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytologist, 103:391-396
[38]
Dalpé Y, 1991. Statut endomycorrhizien du genre Oidiodendron. Canadian Journal of Botany, 69:1712-1714
[39]
Douglas GC, Heslin MC, Reid C, 1989. Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterization of synthesized mycorrhizas. Canadian Journal of Botany, 67:2206-2212
[40]
Duckett JG, Read DJ, 1995. Ericoid mycorrhizas and rhizoid-ascomycete association in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associationsin vitro. New Phytologist, 129:439-447
[41]
Duddridge J, Read DJ, 1982. An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. Canadian Journal of Botany, 60:2345-2356
[42]
Egger KN, Sigler L, 1993. Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia, 85:219-230
[43]
Enright NJ, Cao KF, 2010. Plant ecology in China. Plant Ecology, 209:181-187
[44]
Genney DR, Alexander IJ, Hartley SE, 2000. Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. Journal of Experimental Botany, 51:1117-1125
[45]
Gerz M, Bueno CG, Ozinga WA, Zobel M, Moora M, 2018. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology, 106:254-264
[46]
Gorman NR, Starrett MC, 2003. Host range of a select isolate of the ericoid mycorrhizal fungusHymenoscyphus ericae. Hortscience, 38(6):1163-1166
[47]
Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ, 2009. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorataectomycorrhizas. New Phytologist, 182:359-366
[48]
Grelet GA, Johnson D, Vrålstad T, Alexander IJ, Anderson IC, 2010. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytologist, 188(1):210-222
[49]
Grünig CR, Queloz V, Sieber TN, Holdenrieder O, 2008. Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.-Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany, 86:1355-1369
[50]
Hambleton S, Currah RS, 1997. Fungal endophytes from the roots of alpine and boreal Ericaceae. Canadian Journal of Botany, 75:1570-1581
[51]
Hamím A, Miché L, Douaík A, Mrabet R, Ouhammou A, Duponnoís R, Hafídí M, 2017. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. Comptes Rendus Biologies, 340:226-237
[52]
Hartley J, Cairney JWG, Meharg AA, 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant and Soil, 189:303-319
[53]
He XH, Duan YH, Chen YL, Xu MG, 2010. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Science China-Life Science, 53:1374-1398
[54]
Hofland-Zijlstra JD, Berendse F, 2010. Effects of litters with different concentrations of phenolics on the competition between Calluna vulgaris and Deschampsia flexuosa. Plant and Soil, 327(1):131-141
[55]
Hutton BJ, Dixon KW, Sivasithamparam K, 1994. Ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytologist, 127:557-566
[56]
Ishida TA, Nordin A, 2010. No evidence that nitrogen enrichment affect fungal communities of Vacciniumroots in two contrasting boreal forest types. Soil Biology and Biochemistry, 42(2):234-243
[57]
Jansa J, Vosátka M, 2000. In vitro and post vitro inoculation of micropropagated rhododendrons with ericoid mycorrhizal fungi. Applied Soil Ecology, 15(2):125-136
[58]
Johansson M, 2000. The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization ofCalluna vulgaris (L.) Hull from a Danish heathland. Oecologia, 123:418-424
Conversion of European heathlands to grassland has been reported as a response to increased nutrient availability, especially of nitrogen; a direct effect upon mycorrhizal colonization has been proposed as an likely explanation.This hypothesis was tested in a random block experiment with four blocks and four replicates on a Danish inland heath, Hjelm Hede. Ammonium nitrate was applied (0, 35, 50 and 70 kg N ha year) to a stand of Calluna vulgaris (L.) Hull four times annually for 2 years. Calluna roots were sampled on four occasions in the 2nd year of the nitrogen treatment. The extent of ericoid mycorrhizal colonization was determined by direct observation of the roots using a line-intersection method. The nitrogen content of the current-year shoots of Calluna increased when they were treated with nitrogen. Nitrogen fertilization had no significant effects on ericoid mycorrhizal colonization of Calluna nor on root biomass. The seasonal variation in mycorrhizal colonization of the Calluna roots was highly significant. The spatial variability of mycorrhizal colonization, both in replicated plots and in the two contrasted soil horizons - the mor layer and the bleached sand - within the plots, were considerable. I conclude that heather decline under enhanced nitrogen input is unlikely to be caused by a direct impact on the ericoid mycorrhizae of Calluna.
[59]
Kamal S, Varma A, 2008. Peatland microbiology. In: Dion P, Nautiyal CS (eds.) Microbiology of extreme soils. Springer Berlin Heidelberg, Berlin. 177-203
[60]
Kerley SJ, Read DJ, 1997. The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytologist, 136:691-701
[61]
Kristensen HL, Henriksen K, 1998. Soil nitrogen transformations along a successional gradient from Calluna heathland to Quercus forest at intermediate atmospheric nitrogen deposition. Applied Soil Ecology, 8(1-3):95-109
[62]
Leake JR, Read DJ, 1989. The biology of mycorrhizas in the Ericaceae. ⅩⅢ. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae. New Phytologist, 112:69-76
[63]
Leyval C, Turnau K, Haselwandter K, 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7:139-153
[64]
Lin LC, Lee MJ, Chen JL, 2011. Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron (Rhododendron formosanum Hemsl.). Mycorrhiza, 21(5):331-339
[65]
Liu G, Chambers SM, Cairney JWG, 1998. Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens(Cav.) F. Muell. (Epacridaceae). New Phytologist, 140:145-153
[66]
Lorberau KE, Botnen SS, Mundra S, Aas AB, Rozema J, Eidesen PB, Kauserud H, 2017. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrubCassiope tetragona (Ericaceae)? Mycorrhiza, 27:513-524
Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.
[67]
Marrs RH, Bannister P, 1978. The adaptation of Calluna vulgaris (L.) Hull to contrasting soil types. New Phytologist, 81:753-761
[68]
Martino E, Franco B, Piccoli G, Stocchi V, Perotto S, 2002. Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius. Molecular and Cellular Biochemistry, 231(1):179-185
[69]
McLean CB, Lawrie AC, 1996. Patterns of root colonization in epacridaceous plants collected from different sites. Annals of Botany, 77:405-411
[70]
McLean CB, Anthony J, Collins RA, Steinke E, Lawrie AC, 1998. First synthesis of ericoid mycorrhizas in the Epacridaceae under axenic conditions. New Phytologist, 139(3):589-593
[71]
McLean CB, Cunnington JH, Lawrie AC, 1999. Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytologist, 144:351-358
[72]
Meharg AA, Cairney JWG, 2000. Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments. Advances in Ecological Research, 30:69-112
[73]
Midgley DJ, Greenfield P, Bissett A, Tran-Dinh N, 2017. First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root associated fungi. Mycorrhiza, 27:587-594
The prominent ericoid mycorrhizal fungus, Pezoloma ericae, has not been found in Australia to date. In the present study, internal transcribed spacer (ITS) data from the Biomes of Australia Soil Environments (BASE) was searched for evidence of P. ericae and other known ericoid mycorrhizal and root-associated taxa. ITS sequences with high identity to P. ericae, Meliniomyces bicolor, Meliniomyces variabilis, Cairneyella sp. 2, Cadophora finlandica and Woollsia mycorrhizal fungus VI were identified and their distribution in Australia visualised. This is the first evidence that P. ericae, M. bicolor and M. variabilis very likely occur on the Australian continent and provides a set of locations from which to seek isolates for further characterisation. The presence of P. ericae in South America, South Africa, and now Australia suggests a broad and ancient Gondwanan distribution for this well-studied species.
[74]
Monni S, Salemaa M, Millar N, 2000a. The tolerance of Empetrum nigrum to copper and nickel. Environmental Pollution, 109:221-229
[75]
Monni S, Salemaa M, White C, Tuittila E, Huopalainen M, 2000b. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland. Environmental Pollution, 109:211-219
[76]
Monreal M, Berch SM, Berbee M, 1999. Molecular diversity of ericoid mycorrhizal fungi. Canadian Journal of Botany, 77:1580-1594
[77]
Myers MD, Leake JR, 1996. Phosphodiesters as mycorrhizal P sources. II. Ericoid mycorrhiza and the utilisation of nuclei as a phosphorus and nitrogen source byVaccinium macrocarpon. New Phytologist, 132:445-451
Mycorrhizal plants of Vaccinium mocrocarpon Aiton used nuclei from salmon sperm as a sole source of phosphorus (P) and achieved similar yields, P content and P concentration to plants crown with orthophosphate. Mycorrhizal infection significantly increased the effectiveness of utilization of both inorganic and organic (nuclei) sources of P by Vaccinium but in the case of the organic source this involved providing access to P which was completely unavailable to the uninfected plants. The results provide further support for the view that ericoid mycorrhizas have a crucial role in direct recycling of nutrients from organic matter, independent of the mineralizing activities of saprotrophic micro-organisms.
[78]
Nielsena PL, Andresena LC, Michelsena A, Schmidtb IK, Kongstad J, 2009. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants. Applied Soil Ecology, 42(3):279-287
[79]
Ning CH, Li WB, Yang XL, Liang C, Zhao HH, 2018. Investigation on the root multiple symbionts and rhizosphere soil AM fungi of blueberry. Mycosystema, 37(9):1143-1153 (in Chinese)
[80]
Okuda A, Yamato M, Iwase K, 2011. The mycorrhiza of Schizocodon soldanelloidesvar. magnus(Diapensiaceae) is regarded as ericoid mycorrhiza from its structure and fungal identities. Mycoscience, 5:1-6
[81]
Perotto S, Actis-Perino E, Perugini J, Bonfante P, 1996. Molecular diversity of fungi from ericoid mycorrhizal roots. Molecular Ecology, 5:123-131
[82]
Perotto S, Girlanda M, Martino E, 2002. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil, 244:41-53
[83]
Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T, 2003. Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia, 137(2):252-257
A wide range of recent studies have indicated that organic nitrogen may be of great importance to plant nitrogen (N) nutrition. Most of these studies have, however, been conducted in laboratory settings, excluding important factors for actual plant uptake, such as competition, mycorrhizal associations and soil interactions. In order to accurately evaluate the importance of different N compounds to plant N nutrition, field studies are crucial. In this study, we investigated short- as well as long-term plant nitrogen uptake by Deschampsia flexuosa, Picea abies and Vaccinium myrtillus from 15NO3-, 15NH4+ and (U-13C, 15N) arginine, glycine or peptides. Root N uptake was analysed after 6 h and 64 days following injections. Our results show that all three species, irrespective of their type of associated mycorrhiza (arbuscular, ecto- or ericoid, respectively) rapidly acquired similar amounts of N from the entire range of added N sources. After 64 days, P. abies and V. myrtillus had acquired similar amounts of N from all N sources, while for D. flexuosa, the uptake from all N sources except ammonium was significantly lower than that from nitrate. Furthermore, soil analyses indicate that glycine was rapidly decarboxylated after injections, while other organic compounds exhibited slower turnover. In all, these results suggest that a wide range of N compounds may be of importance for the N nutrition of these boreal forest plants, and that the type of mycorrhiza may be of great importance for N scavenging, but less important to the N uptake capacity of plants.
[84]
Peterson TA, Mueller WC, Englander L, 1980. Anatomy and ultrastructure of a Rhododendron root-fungus association. Canadian Journal of Botany, 58:2421-2433
[85]
Peterson RL, Massicotte HB, Melville LH, 2004. Mycorrhizas:anatomy and cell biology. NRC Research Press,Ottawa. 1-173
[86]
Piercey MM, Thormann MN, Currah RS, 2002. Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicumand Picea mariana in culture. Mycorrhiza, 12(4):175-180
Simultaneous associations among ectotrophic and ericoid mycorrhizal hosts and their mycorrhizal fungi are expected in boreal bogs where ericaceous shrubs and conifers coexist rooted in an organic matrix dominated by Sphagnum mosses. We were thus prompted to examine, in vitro, the abilities of three ericoid mycorrhizal fungi [ Hymenoscyphus ericae, Oidiodendron maius, and Variable White Taxon (VWT)] to associate with Picea mariana (Pinaceae), with both P. mariana and Rhododendron groenlandicum (Ericaceae) simultaneously, and to decompose Sphagnum fuscum. Hymenoscyphus ericae and VWT developed an intracellular association with roots of P. mariana and with roots of R. groenlandicum. Two strains of O. maius did not form typical infection units in R. groenlandicum, nor did they colonize the root cells of P. mariana. Mass losses incurred by sterilized S. fuscum plants inoculated with these three taxa indicated that O. maius could be more efficient as a free-living saprophyte on this material than either H. ericae or VWT and may in part explain why atypical associations with the roots of ericaceous hosts were formed.
[87]
Pócsi I, 2011. Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Bánfalvi G (ed.) Cellular effects of heavy metals. Springer Netherlands. 31-58
[88]
Rains KC, Bledsoe CS, 2007. Rapid uptake of15N-ammonium and glycine-13C,15N by arbuscular and ericoid mycorrhizal plants native to a Northern California coastal pygmy forest. Soil Biology and Biochemistry, 39(5):1078-1086
[89]
Read DJ, Kerley SJ, 1995. The status and function of ericoid mycorrhizal systems. In: Varma A, Hock B (eds.) Mycorrhiza: structure, function, molecular biology and biotechnology. 2nd ed. Springer- Verlag, Berlin. 499-520
[90]
Read DJ, 1996. The structure and function of ericoid mycorrhizal. Annals of Botany, 77:365-374
[91]
Read DJ, Perez-Moreno J, 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist, 157:475-492
[92]
Rice AV, Currah RS, 2005. Oidiodendron: a survey of the named species and related anamorphs of Myxotrichum. Studies in Mycology, 53:83-120
[93]
Schulz B, 2006. Mutualistic interaction with fungal root endophytes. In: Schulz B, Boyle C, Sieber T (eds.) Microbial root endophytes. Springer Berlin Heidelberg,Berlin. 261-279
[94]
Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M, 2007. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist, 174:864-878
[95]
Setaro SD, Kron KA, 2011. Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales-an indication for concerted migration? PLoS Currents, 3: RRN1227
[96]
Sharples JM, Meharg AA, Chambers SM, Cairney JWG, 2000a. Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytologist, 148:153-162
[97]
Sharples JM, Meharg AA, Chambers SM, Cairney JWG, 2000b. Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiology, 124:1327-1334
[98]
Sharples JM, Meharg AA, Chambers SM, Cairney JWG, 2000c. Symbiotic solution to arsenic contamination. Nature, 404:951-952
[99]
Sikes BA, Cottenie K, Klironomos JN, 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology, 97(6):1274-1280
[100]
Smith SE, Read DJ, 2008. Mycorrhizal symbiosis (Third Edition). Academic Press, Cambridge. 389-390
[101]
Steinke E, Williams PG, Ashford AE, 1996. The structure and fungal associates of mycorrhizas in Leucopogon parviflorus (Andr.) Lindl. Annals of Botany, 77:413-419
[102]
Straker CJ, 1996. Ericoid mycorrhiza: ecological and host specificity. Mycorrhiza, 6:215-225
[103]
Sun LF, Pei KQ, Wang F, Ding Q, Bing YH, Gao B, Zheng Y, Liang Y, Ma KP, 2012. Different distribution patterns between putative ericoid mycorrhizal and other fungal assemblages in roots of Rhododendron decorum in the southwest of China. PLoS One, 7(11):1-10
[104]
Thormann MN, Currah RS, Bayley SE, 2002. The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates. Canadian Journal of Microbiology, 48(3):204-211
[105]
Tian W, Zhang CQ, Qiao P, Milne R, 2011. Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan, China. Mycologia, 103(4):703-709
The diversity of ericoid mycorrhizal fungi isolated from Rhododendron decorum Franch. in Yunnan, southwestern China, was examined for the first time. In total 300 hair-root samples were collected from 13 R. decorum individuals in two adjacent wild population sites and one cultivated population site. Two hundred eighteen slow-growing isolates were obtained; the ability of some to form ericoid mycorrhiza was tested in vitro. One hundred twenty-five isolates formed hyphal structures morphologically corresponding to ericoid mycorrhiza, and these were determined by morphological and molecular means to belong to 12 fungal species. There were hardly any differences in species among the three sampled populations. The sequences of several isolates were similar to those of Oidiodendron maius and ericoid mycorrhizal fungi from Helotiales, accounting respectively for 18.4% and 24.8% of the total culturable ericoid mycorrhizal fungi assemblage. Dark septate endophytes were detected in the sampled hair roots by microscopy.
[106]
Usuki F, Abe JP, Kakishima M, 2003. Diversity of ericoid mycorrhizal fungi isolated from hair roots of Rhododendron obtusum var. kaempferi in a Japanese red pine forest. Mycoscience, 44:97-102
[107]
Vallino M, Zampieri E, Murat C, Girlanda M, Picarella S, Pitet M, Portis E, Martino E, Perotto S, 2011. Specific regions in the Sod1 locus of the ericoid mycorrhizal fungus Oidiodendron maius from metal-enriched soils show a different sequence polymorphism. FEMS Microbiology Ecology, 75(2):321-331
[108]
van der Eerden LJ, Dueck ThA, Berdowski JJM, Greven H, van Dobben HF, 1991. Influence of NH3 and (NH4)2SO4 on heathland vegetation. Acta Botanica Neerlandica, 40:281-296
[109]
van der Heijden MGA, Bardgett RD, van Straalen NM, 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11:296-310
[110]
van der Heijden MGA, Horton TR, 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97(6):1139-1150
[111]
van der Wal A, van Veen JA, Pijl AS, Summerbell RC, de Boer W, 2006. Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils. Soil Biology and Biochemistry, 38:2890-2902
[112]
Villarreal-Ruiz L, Anderson IC, Alexander IJ, 2004. Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytologist, 164:183-192
[113]
Vohník M, Lukancic S, Bahor E, Regvar M, Vosatka M, Vodnik D, 2003. Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobotanica, 38(2):191-200
[114]
Vohník M, Albrechtova J, Vosatka M, 2005. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis, 40(2):87-96
[115]
Vohník M, Burdíková Z, Albrechtová J, Vosátka M, 2009. Testate amoebae (Arcellinida and Euglyphida) vs. ericoid mycorrhizal and DSE fungi: a possible novel interaction in the mycorrhizosphere of ericaceous plants? Microbial Ecology, 57(1):203-214
[116]
Vohník M, Albrechtová J, 2011. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobotanica, 46:373-386
[117]
Vohník M, 2020. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza, 30:671-695
[118]
Vrålstad T, Schumacher T, Taylor AFS, 2001. Mycorrhizal synthesis between fungal strains of theHymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytologist, 153:143-152
[119]
Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A, 2011. Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytologist, 191(2):515-527
[120]
Wei X, Chen J, Zhang C, Pan D, 2016. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth. Frontiers in Plant Science, 7:1594
[121]
Whittaker SP, Cairney JWG, 2001. Influence of amino acids on biomass production by ericoid mycorrhizal endophytes from Woollsia pungens(Epacridaceae). Mycological Research, 105:105-111
[122]
Wurzburger N, Higgins BP, Hendrick RL, 2011. Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecology and Evolution, 2(1):65-79
[123]
Xiao GP, Berch SM, 1992. Ericoid mycorrhizal fungi of Gaultheria shallon. Mycologia, 84:470-471
[124]
Xiao GP, 1994. The role of root-associated fungi in the dominance of Gaultheria shallon. PhD Dissertation, University of British Columbia, Vancouver. 1-148
[125]
Yang HB, Fang RZ, Jin CL, 2006. Flora of China. Vol. 57. Fasc.1. Science Press, Beijing. 1-244(in Chinese)
[126]
Yu F, Zhang CY, Yin LJ, Lai ZX, 2008. In vitro inoculation technology of Rhododendron fortunei L. with ericoid mycorrhizal fungi and its inoculation effect. Journal of Fujian Agricaltural Forestrey University (Natural Science Edition), 37(4):360-364
[127]
Zhang CY, Yin LJ, Dai SL, 2009. Diversity of root-associated fungal endophytes in Rhododendron fortuneiin subtropical forests of China. Mycorrhiza, 19(6):417-423
[128]
Zhang YH, Ni J, Tang FP, Pei KQ, Luo YQ, Jiang LF, Sun LF, Liang Y, 2016. Root-associated fungi of Vaccinium carlesii in subtropical forests of China: intra- and inter-annual variability and impacts of human disturbances. Scientific Reports, 6:22399
[129]
Zhang YH, Ni J, Tang FP, Jiang LF, Pei KQ, Guo TR, Sun LF, Liang Y, 2017. The effects of different human disturbance regimes on root fungal diversity of Rhododendron ovatum in subtropical forests of China. Canadian Journal of Forest Research, 47:659-666
[130]
Zhang YH, Tang FP, Ni J, Dong LJ, Sun LF, 2019. Diversity of root‑associated fungi of Rhododendron simsii in subtropical forests: fungal communities with high resistance to anthropogenic disturbances. Journal Forest Research, 30(6):2321-2330
[131]
Zheng Y, Gao B, Sun LF, Bing YH, Pei KQ, 2010. Diversity of fungi associated with Rhododendron argyrophyllum andR.floribundum hair roots in Sichuan, China. Biodiversity Science, 18(1):76-82 (in Chinese)
[132]
Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, Braakhekke WG, Berendse F, 2005. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass,Deschampsia flexuosa. Studies in Mycology, 53:147-162
[133]
宁楚涵, 李文彬, 杨小龙, 梁晨, 赵洪海, 2018. 蓝莓根系复合共生体及其根区土壤中AM真菌调查. 菌物学报, 37(9):1143-1153
[134]
杨汉碧, 方瑞征, 金存礼, 2006. 中国植物志(第57卷第一分册). 北京: 科学出版社. 1-244
[135]
郑钰, 高博, 孙立夫, 邴艳红, 裴克全, 2010. 银叶杜鹃和繁花杜鹃根部真菌的多样性. 生物多样性, 18(1):76-82

基金

国家自然科学基金(31170469)
浙江省自然科学基金(LY19C030002)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(450 KB)

Accesses

Citation

Detail

段落导航
相关文章

/