
杜鹃花科植物菌根的研究进展
Research advances on the mycorrhizas of Ericaceae plants
杜鹃花科Ericaceae植物可与土壤真菌形成杜鹃花类菌根ericoid mycorrhizas(ERM)共生体,且广泛分布于全球不同的陆地生态系统,特别是在贫瘠、酸性等严酷的环境中占优势。杜鹃花科植物菌根类型多样,绝大多数宿主具有ERM,还有少量宿主具有其他类型的菌根结构,且常与暗隔内生菌(dark septate endophyte,DSE)并存;ERM的宿主植物除已知的杜鹃花科外,岩梅科Diapensiaceae植物也具有ERM结构;ERM真菌以子囊菌和担子菌为主,主要来自柔膜菌目Helotiales和蜡壳耳目Sebacinales;与杜鹃花科宿主形成ERM的真菌也常与壳斗科Fagaceae、松科Pinaceae等宿主植物形成外生菌根(ectomycorrhiza,ECM)结构;ERM对宿主植物在营养吸收、忍耐贫瘠环境、抵抗重金属污染等能力方面都有积极的促进作用,对环境变化的响应是多样的,生境和季节的变化对ERMF群落的组成和分布有着显著影响,资源比率变化可能改变ERM宿主与其他菌根或非菌根植物之间的竞争关系。本文回顾了近40多年来国内外有关ERM的研究进展,还对ERM研究的前景进行了展望,以期在理论和实践中对杜鹃花科及其菌根的研究能取得更丰硕的成果。
Ericaceae plants and soil fungi often form ericoid mycorrhiza (ERM) symbiosis. ERM fungi are distributed widely over different global continental ecosystems, especially dominate in harsh environment with poor and acid soil. The mycorrhizal types of Ericaceae were diverse; apart from ERM, a few other types of mycorrhizae can be found in some ericaceous hosts, and often coexist with dark septate endophyte (DSE). Besides the well-known Ericaceae, ERM structure was also discovered in Diapensiaceae plants. ERM fungi mainly belonged to Ascomycetes and Basidiomycetes, and mostly Helotiales and Sebacinales. ERM fungi often formed ectomycorrhizal (ECM) structures on other hosts such as Fagaceae and Pinaceae. ERM not only helped their hosts on absorbing nutrients, increasing tolerant capacity in poor nutrient habitats, but also enhancing the resistance to heavy metal contamination. The community composition and distribution of ERM fungi showed significant variation with habitats and seasons. The variation of resource ratio might change the competitive relationship between ERM host and other mycorrhizal or non-mycorrhizal plants. In this paper, the advances of researches on ERM and their hosts over the past 40 years were reviewed. Prospect about ERM study was also previewed.
杜鹃花科植物 / 杜鹃花类菌根 / 菌根真菌 / 多样性 {{custom_keyword}} /
Ericaceae / ericoid mycorrhiza / mycorrhizal fungi / diversity {{custom_keyword}} /
图3 剑孢新赤壳 (HMAS 290889)A-C:自然基物上的子囊壳;D,E:25 ℃培养7 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-I:子囊及子囊孢子;J-L:子囊孢子;M,N:分生孢子梗和小型分生孢子;O:小型分生孢子;P-S:大型分生孢子. 标尺:A-C=1 mm;F=50 μm;G-S=10 μm Fig. 3 Neocosmospora protoensiformis (HMAS 290889). A-C: Ascomata on natural substratum; D, E: Colonies after 7 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-I: Asci with ascospores; J-L: Ascospores; M, N: Conidiophores and microconidia; O: Microconidia; P-S: Macroconidia. Bars: A-C=1 mm; F=50 μm; G-S=10 μm. |
图5 瘤顶赤壳 (HMAS 290890)A-C:自然基物上的子囊壳;D,E:25 ℃培养14 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-K:分生孢子梗和分生孢子;L:厚垣孢子. 标尺:A-C=1 mm;F=50 μm;G-L=10 μm Fig. 5 Tumenectria laetidisca (HMAS 290890). A-C: Ascomata on natural substratum; D, E: Colonies after 14 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-K: Conidiophores and conidia; L: Chlamydospores. Bars: A-C=1 mm; F=50 μm; G-L=10 μm. |
图6 基于ITS和LSU序列的MP树粗体显示5个中国新记录种的系统发育位置,MPBP大于50% (左)、BIPP大于90% (右)标注于分支节点上 Fig. 6 Maximum parsimony phylogram reconstructed from the combined sequences of ITS and LSU. the phylogenetic position of the five Nectriaceae species new to China. MPBP above 50% (left) showing and BIPP above 90% (right) are given respectively. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
Lyman glacier in the North Cascades Mountains of Washington has a subalpine forefront characterized by a well-developed terminal moraine, inconspicuous successional moraines, fluting, and outwash. These deposits were depleted of symbiotic fungi when first exposed but colonized by them over time after exposure. Four major groups of plant species in this system are (1) mycorrhiza-independent or facultative mycotrophic, (2) dependent on arbuscular mycorrhizae (AM) (3) dependent on ericoid mycorrhiza (ERM) or ectomycorrhizae (EM), and (4) colonized by dark-septate (DS) endophytes. We hypothesized that availability of mycorrhizal propagules was related to the success of mycorrhiza-dependent plants in colonizing new substrates in naturally evolved ecosystems. To test this hypothesis roots samples of 66 plant species were examined for mycorrhizal colonization. The plants were sampled from communities at increasing distances from the glacier terminus to compare the newest communities with successively older ones. Long established, secondary successional dry meadow communities adjacent to the glacier forefront, and nearby high alpine communities were sampled for comparison. DS were common on most plant species on the forefront. Nonmycorrhizal plants predominated in the earlier successional sites, whereas the proportion of mycorrhizal plants generally increased with age of community. AM were present, mostly at low levels, and nearly absent in two sites of the forefront. ERM were present in all species of Ericaceae sampled, and EM in all species of Pinaceae and Salicaceae. Roots of plants in the long established meadow and heath communities adjacent to the forefront and the high alpine community all had one or another of the colonization types, with DS and AM predominating.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
Conversion of European heathlands to grassland has been reported as a response to increased nutrient availability, especially of nitrogen; a direct effect upon mycorrhizal colonization has been proposed as an likely explanation.This hypothesis was tested in a random block experiment with four blocks and four replicates on a Danish inland heath, Hjelm Hede. Ammonium nitrate was applied (0, 35, 50 and 70 kg N ha year) to a stand of Calluna vulgaris (L.) Hull four times annually for 2 years. Calluna roots were sampled on four occasions in the 2nd year of the nitrogen treatment. The extent of ericoid mycorrhizal colonization was determined by direct observation of the roots using a line-intersection method. The nitrogen content of the current-year shoots of Calluna increased when they were treated with nitrogen. Nitrogen fertilization had no significant effects on ericoid mycorrhizal colonization of Calluna nor on root biomass. The seasonal variation in mycorrhizal colonization of the Calluna roots was highly significant. The spatial variability of mycorrhizal colonization, both in replicated plots and in the two contrasted soil horizons - the mor layer and the bleached sand - within the plots, were considerable. I conclude that heather decline under enhanced nitrogen input is unlikely to be caused by a direct impact on the ericoid mycorrhizae of Calluna.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[71] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[72] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[73] |
The prominent ericoid mycorrhizal fungus, Pezoloma ericae, has not been found in Australia to date. In the present study, internal transcribed spacer (ITS) data from the Biomes of Australia Soil Environments (BASE) was searched for evidence of P. ericae and other known ericoid mycorrhizal and root-associated taxa. ITS sequences with high identity to P. ericae, Meliniomyces bicolor, Meliniomyces variabilis, Cairneyella sp. 2, Cadophora finlandica and Woollsia mycorrhizal fungus VI were identified and their distribution in Australia visualised. This is the first evidence that P. ericae, M. bicolor and M. variabilis very likely occur on the Australian continent and provides a set of locations from which to seek isolates for further characterisation. The presence of P. ericae in South America, South Africa, and now Australia suggests a broad and ancient Gondwanan distribution for this well-studied species.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[74] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[75] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[76] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[77] |
Mycorrhizal plants of Vaccinium mocrocarpon Aiton used nuclei from salmon sperm as a sole source of phosphorus (P) and achieved similar yields, P content and P concentration to plants crown with orthophosphate. Mycorrhizal infection significantly increased the effectiveness of utilization of both inorganic and organic (nuclei) sources of P by Vaccinium but in the case of the organic source this involved providing access to P which was completely unavailable to the uninfected plants. The results provide further support for the view that ericoid mycorrhizas have a crucial role in direct recycling of nutrients from organic matter, independent of the mineralizing activities of saprotrophic micro-organisms.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[78] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[79] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[80] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[81] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[82] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[83] |
A wide range of recent studies have indicated that organic nitrogen may be of great importance to plant nitrogen (N) nutrition. Most of these studies have, however, been conducted in laboratory settings, excluding important factors for actual plant uptake, such as competition, mycorrhizal associations and soil interactions. In order to accurately evaluate the importance of different N compounds to plant N nutrition, field studies are crucial. In this study, we investigated short- as well as long-term plant nitrogen uptake by Deschampsia flexuosa, Picea abies and Vaccinium myrtillus from 15NO3-, 15NH4+ and (U-13C, 15N) arginine, glycine or peptides. Root N uptake was analysed after 6 h and 64 days following injections. Our results show that all three species, irrespective of their type of associated mycorrhiza (arbuscular, ecto- or ericoid, respectively) rapidly acquired similar amounts of N from the entire range of added N sources. After 64 days, P. abies and V. myrtillus had acquired similar amounts of N from all N sources, while for D. flexuosa, the uptake from all N sources except ammonium was significantly lower than that from nitrate. Furthermore, soil analyses indicate that glycine was rapidly decarboxylated after injections, while other organic compounds exhibited slower turnover. In all, these results suggest that a wide range of N compounds may be of importance for the N nutrition of these boreal forest plants, and that the type of mycorrhiza may be of great importance for N scavenging, but less important to the N uptake capacity of plants.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[84] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[85] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[86] |
Simultaneous associations among ectotrophic and ericoid mycorrhizal hosts and their mycorrhizal fungi are expected in boreal bogs where ericaceous shrubs and conifers coexist rooted in an organic matrix dominated by Sphagnum mosses. We were thus prompted to examine, in vitro, the abilities of three ericoid mycorrhizal fungi [ Hymenoscyphus ericae, Oidiodendron maius, and Variable White Taxon (VWT)] to associate with Picea mariana (Pinaceae), with both P. mariana and Rhododendron groenlandicum (Ericaceae) simultaneously, and to decompose Sphagnum fuscum. Hymenoscyphus ericae and VWT developed an intracellular association with roots of P. mariana and with roots of R. groenlandicum. Two strains of O. maius did not form typical infection units in R. groenlandicum, nor did they colonize the root cells of P. mariana. Mass losses incurred by sterilized S. fuscum plants inoculated with these three taxa indicated that O. maius could be more efficient as a free-living saprophyte on this material than either H. ericae or VWT and may in part explain why atypical associations with the roots of ericaceous hosts were formed.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[87] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[88] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[89] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[90] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[91] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[92] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[93] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[94] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[95] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[96] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[97] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[98] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[99] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[100] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[101] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[102] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[103] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[104] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[105] |
The diversity of ericoid mycorrhizal fungi isolated from Rhododendron decorum Franch. in Yunnan, southwestern China, was examined for the first time. In total 300 hair-root samples were collected from 13 R. decorum individuals in two adjacent wild population sites and one cultivated population site. Two hundred eighteen slow-growing isolates were obtained; the ability of some to form ericoid mycorrhiza was tested in vitro. One hundred twenty-five isolates formed hyphal structures morphologically corresponding to ericoid mycorrhiza, and these were determined by morphological and molecular means to belong to 12 fungal species. There were hardly any differences in species among the three sampled populations. The sequences of several isolates were similar to those of Oidiodendron maius and ericoid mycorrhizal fungi from Helotiales, accounting respectively for 18.4% and 24.8% of the total culturable ericoid mycorrhizal fungi assemblage. Dark septate endophytes were detected in the sampled hair roots by microscopy.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[106] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[107] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[108] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[109] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[110] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[111] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[112] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[113] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[114] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[115] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[116] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[117] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[118] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[119] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[120] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[121] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[122] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[123] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[124] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[125] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[126] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[127] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[128] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[129] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[130] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[131] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[132] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[133] |
宁楚涵, 李文彬, 杨小龙, 梁晨, 赵洪海, 2018. 蓝莓根系复合共生体及其根区土壤中AM真菌调查. 菌物学报, 37(9):1143-1153
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[134] |
杨汉碧, 方瑞征, 金存礼, 2006. 中国植物志(第57卷第一分册). 北京: 科学出版社. 1-244
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[135] |
郑钰, 高博, 孙立夫, 邴艳红, 裴克全, 2010. 银叶杜鹃和繁花杜鹃根部真菌的多样性. 生物多样性, 18(1):76-82
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |