
氨基酸影响尖孢镰孢菌古巴专化型厚垣孢子的形成
丁兆建,漆艳香,曾凡云,朱为菊,许天委,彭军,谢艺贤,张欣
菌物学报 ›› 2021, Vol. 40 ›› Issue (6) : 1413-1426.
氨基酸影响尖孢镰孢菌古巴专化型厚垣孢子的形成
Amino acid involved in chlamydospore formation of Fusarium oxysporum f. sp. cubense
香蕉枯萎病是由尖孢镰孢菌古巴专化型Fusarium oxysporum f. sp. cubense(Foc)侵染引起的一种土传真菌病害,已严重威胁香蕉产业的健康发展。该病菌产生的厚垣孢子可在土壤中存活多年,是香蕉枯萎病的初侵染源。本研究通过氨基酸添加试验,证明添加甘氨酸可抑制厚垣孢子的形成;通过对该病菌厚垣孢子形成前期、初期、中期和后期的转录组分析,发现氨基酸合成通路中有93个基因的表达水平在厚垣孢子形成过程中发生了显著变化;In silico 分析表明其中10个基因参与调控真菌的氨基酸合成,11个基因参与调控真菌种的生长发育和产孢,19个基因参与调控真菌种的致病性和毒素产生。由此推测,氨基酸合成通路不仅与尖孢镰孢菌古巴专化型厚垣孢子的形成相关,其有可能参与调控该病菌的致病性。
Fusarium wilt of banana is a devastative soil-borne fungal disease, caused by Fusarium oxysporum f. sp. cubense (Foc) and it is a serious threat to health production of banana. Chlamydospores abundantly produced by Foc could survive for many years in the infected-soil as primary infection sources of the disease. The experimental results indicate that chlamydospore formation of Foc is evidently inhibited by supplement of glycine in the induction system. Transcriptome analyses of mycelial growth, and chlamydospore formation in initial and afterwards developing stages revealed that expression levels of 93 genes varyied in amino acid biosynthesis pathway. Among them, 10 genes were involved in the regulation of fungal amino acid biosynthesis, 11 genes involved in the regulation of fungal growth and conidial formation, and the other 19 genes in the regulation of fungal virulence and toxin production. These results confirm that glycine is involved in chlamydospore formation and virulence of Foc.
香蕉枯萎病 / 甘氨酸 / 形态发育 / 差异表达基因 {{custom_keyword}} /
Fusarium wilt of banana / glycine / morphological development / differential expression genes {{custom_keyword}} /
表1 候选内参基因的引物序列Table 1 Primer sequences of candidate internal reference genes |
基因名称 Gene name | 正向引物 Forward primer (5’-3’) | 反向引物 Reverse primer (5’-3’) | 扩增产物 Amplicon size (bp) | Tm (°C) |
---|---|---|---|---|
18S rRNA | GCAGTGGCATCTCTCAGTC | TCATCGATGCCAGAACC | 128 | 60 |
APRTase | ATGCTGAGCTGTTTAGCG | TGCCCTGTTCGTCGTAGA | 90 | 60 |
β-TUB | TACGCCTCTTCGACGATAG | GCCGTTGTAGACACCATT | 148 | 60 |
RPL2 | ACCTACCGTCTCCATCAT | GTGAACCTGCTGGACAAT | 109 | 60 |
EF1-α | CAAGGGCTCTTTCAAGTATGC | GTGACATAGTACCTGGGAGT | 114 | 60 |
PGI | TTCGACCAGTATCTTCATCGC | GTGTACTTGACCGACGATCC | 83 | 60 |
PGM | AAGCCCTTTCAGGACCAA | GAACGACTCGGTGTAGTG | 87 | 60 |
H+-ATPase | CGCTTCGCGGAAATCTATAC | AGACGTTCTTGTTGACGG | 90 | 60 |
ACT1 | CAATCGGCACAACTGGACA | GACGACCTGAGCGGAATA | 95 | 60 |
UBQ | CGACATCGAGTTGGACTAC | ATACCTGCAATCTGTCCG | 82 | 60 |
GAPDH | GAGGCCGAGAGCCAACTA | TTCATCACGACAGCACCA | 99 | 60 |
表2 RNA质检结果Table 2 Results of RNA quality control |
样本 Sample | 浓度 Concentration (μg/μL) | A260/280 | A260/230 | 体积 Volume (μL) | 总量 Total (μg) | 28S/18S | RIN |
---|---|---|---|---|---|---|---|
A1 | 0.3864 | 2.18 | 1.84 | 20 | 7.73 | 1.7 | 9.5 |
A2 | 0.1979 | 2.19 | 2.28 | 20 | 3.96 | 0.9 | 7.7 |
A3 | 0.1701 | 2.14 | 1.78 | 20 | 3.40 | 1.0 | 7.2 |
B1 | 0.3490 | 2.18 | 1.81 | 20 | 6.98 | 1.7 | 10.0 |
B2 | 0.2323 | 2.17 | 1.77 | 20 | 4.65 | 2.1 | 9.2 |
B3 | 0.1352 | 2.16 | 1.75 | 15 | 2.03 | 1.2 | 7.1 |
C1 | 0.3873 | 2.16 | 2.24 | 20 | 7.75 | 1.5 | 8.8 |
C2 | 0.5354 | 2.23 | 2.00 | 20 | 10.71 | 1.1 | 7.9 |
C3 | 0.2250 | 2.16 | 2.10 | 20 | 4.50 | 1.3 | 7.9 |
表3 NormFinder分析候选内参基因的表达稳定值Table 3 NormFinder analysis of the stable expression values of the candidate reference genes |
基因名称 Gene name | 稳定值 Stability value | 最优基因 Best gene |
---|---|---|
UBQ | 0.096 | UBQ |
PGM | 0.102 | |
ACT1 | 0.122 | |
H+-ATPase | 0.140 | |
EF-1α | 0.155 | |
18S rRNA | 0.223 | |
APRTase | 0.269 | |
PGI | 0.292 | |
β-TUB | 0.350 | |
RPL2 | 0.363 | |
GAPDH | 0.646 |
表4 BestKeeper程序分析候选内参基因的稳定性表达Table 4 BestKeeper program analyzes the stability expression of candidate reference genes |
基因名称 Gene name | 变异系数 CV | 标准差 SD |
---|---|---|
APRTase | 1.23 | 0.33 |
ACT1 | 1.68 | 0.43 |
H+-ATPase | 1.8 | 0.53 |
UBQ | 2.17 | 0.65 |
PGM | 2.97 | 0.69 |
18S rRNA | 4.31 | 0.7 |
GAPDH | 2.37 | 0.7 |
EF-1A | 3.9 | 0.73 |
PGI | 3.65 | 0.86 |
β-TUB | 3.9 | 0.88 |
RPL2 | 3.86 | 0.9 |
表5 RefFinder综合排名结果Table 5 Comprehensive ranking results of RefFinder |
基因名称 Gene name | Delta CT排名 Delta CT ranking | geNorm排名 geNorm ranking | NormFinder排名 NormFinder ranking | BestKeeper排名 BestKeeper ranking | 几何均值 Geomean | 综合排名 Comprehensive ranking |
---|---|---|---|---|---|---|
UBQ | 2 | 2 | 1 | 4 | 1.78 | 1 |
PGM | 1 | 1 | 2 | 5 | 1.86 | 2 |
ACT1 | 4 | 8 | 3 | 2 | 4.12 | 3 |
EF-1α | 3 | 3 | 5 | 8 | 4.49 | 4 |
H+-ATPase | 5 | 9 | 4 | 3 | 5.18 | 5 |
APRTase | 8 | 10 | 7 | 1 | 5.79 | 6 |
18S rRNA | 6 | 7 | 6 | 6 | 6.48 | 7 |
PGI | 7 | 6 | 8 | 9 | 7.16 | 8 |
β-TUB | 9 | 5 | 9 | 10 | 8.17 | 9 |
RPL2 | 10 | 4 | 10 | 11 | 8.32 | 10 |
GAPDH | 11 | 11 | 11 | 7 | 10.84 | 11 |
[1] |
A gene, HDC1, related to the Saccharomyces cerevisiae histone deacetylase (HDAC) gene HOS2, was isolated from the filamentous fungus Cochliobolus carbonum, a pathogen of maize that makes the HDAC inhibitor HC-toxin. Engineered mutants of HDC1 had smaller and less septate conidia and exhibited an approximately 50% reduction in total HDAC activity. Mutants were strongly reduced in virulence as a result of reduced penetration efficiency. Growth of hdc1 mutants in vitro was normal on glucose, slightly decreased on sucrose, and reduced by 30 to 73% on other simple and complex carbohydrates. Extracellular depolymerase activities and expression of the corresponding genes were downregulated in hdc1 mutant strains. Except for altered conidial morphology, the phenotypes of hdc1 mutants were similar to those of C. carbonum strains mutated in ccSNF1 encoding a protein kinase necessary for expression of glucose-repressed genes. These results show that HDC1 has multiple functions in a filamentous fungus and is required for full virulence of C. carbonum on maize.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
Genes encoding the mitochondrial (SHM1) and cytosolic (SHM2) serine hydroxymethyltransferases, and the L-threonine aldolase gene (GLY1) from Candida albicans were cloned and sequenced. All three genes are involved in glycine metabolism. The C. albicans Shm1 protein is 82% identical to that from Saccharomyces cerevisiae and 56% identical to that from Homo sapiens. The corresponding identities for the Shm2 proteins are 68% and 53%. The Gly1 protein shares significant identity with the S. cerevisiae L-threonine aldolase (55%) and also with threonine aldolases from Aeromonas jandiae (36%) and Escherichia coli (36%). Genetic ablation experiments show that GLY1 is a non-essential gene in C. albicans and that L-threonine aldolase plays a lesser role in glycine metabolism than it does in S. cerevisiae. GenBank Accession Nos of the C. albicans SHM1 and SHM2 are AF009965 and AF009966, respectively. Accession No. for C. albicans GLY1 is AF009967. Copyright 2000 John Wiley & Sons, Ltd.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
陈石, 李春雨, 易干军, 周红玲, 郑加协, 2011. 尖镰孢菌致病机理研究进展. 中国农学通报, 27(13):74-78
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
丁兆建, 漆艳香, 曾凡云, 彭军, 谢艺贤, 张欣, 2018a. 转录因子FoSwi6调控香蕉枯萎病菌的生理特性和致病性. 植物病理学报, 48(5):601-610
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
丁兆建, 漆艳香, 曾凡云, 彭军, 谢艺贤, 张欣, 2019a. 氨基糖代谢通路影响尖孢镰刀菌古巴专化型厚垣孢子的形成. 菌物学报, 38(4):485-493
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
丁兆建, 吴小霞, 孙君梅, 陈丽霞, 傅琪彦, 许天委, 2019b. 尖孢镰刀菌古巴专化型MAPK FoSlt2敲除突变体的转录组分析. 菌物学报, 38(7):1090-1098
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
董章勇, 王振中, 2012. 植物病原真菌细胞壁降解酶的研究进展. 湖北农业科学, 51(21):4697-4700
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
何壮, 漆艳香, 曾凡云, 丁兆建, 梁峻玮, 张欣, 彭军, 谢培兰, 谢艺贤, 2019. 香蕉枯萎病菌4号生理小种smy1基因的功能分析. 热带作物学报, 40(12):2447-2455
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
李春雨, 陈石, 左存武, 邝瑞彬, 易干军, 2011. 香蕉枯萎病菌新毒素——白僵菌素的鉴定. 园艺学报, 38(11):2092-2098
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
李敏慧, 苑曼琳, 姜子德, 李华平, 2019. 香蕉枯萎病菌致病机理研究进展. 果树学报, 36(6):803-811
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
刘远征, 漆艳香, 曾凡云, 丁兆建, 何壮, 彭军, 张欣, 谢培兰, 谢艺贤, 2018a. 香蕉枯萎病菌4号生理小种β1-微管蛋白基因的功能分析. 热带作物学报, 39(6):1153-1160
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[71] |
刘远征, 漆艳香, 曾凡云, 丁兆建, 何壮, 彭军, 张欣, 谢艺贤, 2018b. 香蕉枯萎病菌4号生理小种β2-微管蛋白基因敲除与表型分析. 果树学报, 35(12):1467-1477
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[72] |
许文耀, 兀旭辉, 林成辉, 2004. 香蕉枯萎病菌粗毒素的毒性及其模型. 热带作物学报, 2004(4):25-29
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |