
基于UPLC-MS/MS定量检测法优化灵芝三萜热回流提取工艺的研究
彭小芳,程池露,唐庆九,张劲松,唐传红,王晨光,冯娜,韩伟
菌物学报 ›› 2021, Vol. 40 ›› Issue (9) : 2480-2494.
基于UPLC-MS/MS定量检测法优化灵芝三萜热回流提取工艺的研究
Optimization of the hot reflux extraction process of Ganoderma lingzhi triterpenoids based on UPLC-MS/MS quantitative detection method
基于超高效液相-三重四级杆质谱联用(UPLC-MS/MS)定量检测法优化出一种灵芝三萜热回流提取的工艺。通过本实验建立的灵芝三萜UPLC-MS/MS精确方法检测不同来源的7个栽培品种灵芝子实体中19个三萜化合物的含量,筛选出三萜含量较高的sd-2灵芝子实体作为提取原料,以三萜含量和提取物得率为指标,通过单因素和响应面实验对灵芝三萜的热回流工艺进行优化,获得的最佳条件为:乙醇浓度75%、提取时间2.5h、液料比14:1、提取次数2次。对获得的最佳提取工艺进行中试实验,灵芝子实体乙醇提取物的得率为6.10%,三萜含量为11.8591mg/g。研究结果可为灵芝三萜的工业大规模提取提供理论依据,为灵芝高附加值产品的开发利用提供技术支撑。
Hot reflux extraction process was optimized for Ganoderma lingzhi triterpenoids based on ultra-high performance liquid-triple quadrupole mass spectrometry (UPLC-MS/MS) quantitative detection method. The established UPLC-MS/MS method was used to precisely detect the content of 19 triterpenoids of G. lingzhi fruiting bodies of seven cultivated varieties from different sources, and fruiting body of sd-2 G. lingzhi with high triterpenoids content was selected as the extractive material. Based on triterpenoid content and extract yield, the triterpenoid extraction process was optimized through single factor and response surface experiments. The best optimization conditions obtained were as follows: 75% of ethanol concentration, 2.5h of extraction time, 14:1 of liquid-to-material ratio, and two times of repeated extraction. A pilot experiment was conducted for obtained optimal extraction technology, and the yield of the ethanol extract of G. lingzhi fruiting body was 6.10%, and the content of triterpenoid was 11.8591mg/g. The results provide theoretical reference for the industrialized large-scale extraction of G. lingzhi triterpenoids and technical support of further development and utilization of G. lingzhi high value-added products.
三萜类化合物 / 液质联用分析 / 中试提取 / 响应面优化 {{custom_keyword}} /
triterpenoids / LC-MS analysis / pilot extraction / response surface optimization {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Five new lanostane triterpenoids, ganoderic acid XL1 (1), ganoderic acid XL2 (2), 20-hydroxy-ganoderic acid AM1 (3), ganoderenic acid AM1 (4) and ganoderesin C (5), together with five known triterpenoids (6-10) were isolated from the fruiting bodies of Ganoderma theaecolum. Chemical structures were elucidated on the basis of spectroscopic evidence, including 1D, 2D NMR, mass spectrometric data and circular dichroism spectra. Compounds 1, 4, 5, 8, 9 and 10 (10 μM) exhibited hepatoprotective activities against DL-galactosamine-induced cell damage in HL-7702 cells.Copyright © 2014 Elsevier B.V. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
蔡蕤, 2020. 灵芝三萜通过Wnt/β-catenin信号通路对肝癌细胞增殖和凋亡的影响. 中成药, 42(5):1320-1324
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
戴玉成, 曹云, 周丽伟, 吴声华, 2013. 中国灵芝学名之管见. 菌物学报, 32:947-952
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
杜国华, 王宏旭, 闫征, 刘莉莹, 陈若芸, 2017. 灵芝三萜化合物的抗肿瘤靶点预测与活性验证. 中国中药杂志, 42(3):517-522
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
段晓颖, 范梨颖, 马秋莹, 牛晓静, 郭娇, 徐立然, 2018. 灵芝总三萜提取与精制工艺优选. 中医研究, 31(11):59-63
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
高文庚, 胡琼方, 董建生, 2019. 灵芝发酵粉中三萜化合物提取、纯化及结构初步分析. 中国食品添加剂, 30(10):86-92
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
胡居吾, 范青生, 肖小年, 2006. 菌草灵芝与段木灵芝的功效成分的比较研究. 天然产物研究与开发, 18(3):458-460
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
贾红岩, 王亚涛, 张芝华, 冯娜, 刘艳芳, 周帅, 张忠, 张劲松, 唐庆九, 2017. 高效液相色谱法测定不同产地及品种灵芝三萜类成分的含量. 微生物学通报, 44(1):238-244
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
李保明, 古海锋, 李晔, 刘超, 王洪庆, 康洁, 吴长辉, 陈若芸, 2012. HPLC测定不同产地灵芝中9种三萜酸. 中国中药杂志, 37(23):3599-3603
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
林志彬, 2015. 灵芝的现代研究. 第4版. 北京: 北京大学医学出版社. 1-176
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
刘盛荣, 郑世仲, 阮俊峰, 张维瑞, 2019. 正交-满意度函数优化灵芝多糖及三萜共提取条件及其清除自由基活性. 菌物学报, 38(5):728-738
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
任奕, 2020. 灵芝中三萜类有效成分的提取技术. 农业科技与装备, 42(2):52-53
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
谭洪升, 李翔, 巩伯梁, 李刚, 2018. 灵芝子实体和孢子粉三萜含量的测定及体外抗肿瘤活性的评价. 微生物学免疫学进展, 46(1):43-48
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
滕李铭, 田雪梅, 吴芳, 戴玉成, 2021. 13种野生灵芝菌丝体中胞内三萜与多糖含量的比较研究. 菌物学报, 40(7):1811-1819
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
谢宝靖, 何正有, 李维, 刘婧, 邹昆, 屠银芳, 刘宏璧, 2016. 不同菌种灵芝药材中三萜类成分的对比研究. 华西药学杂志, 31(4):408-411
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
张忠, 张劲松, 刘艳芳, 周帅, 王金艳, 于华峥, 唐庆九, 2016. 分光光度法测定灵芝中三萜含量方法探讨. 上海农业学报, 32(1):61-65
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
郑洁, 2019. 灵芝三萜指纹图谱、谱效关系研究及UPLC-MS/MS方法的建立. 华东理工大学硕士论文,上海. 28-43
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
郑士彬, 韩阳, 韩静, 李蒙, 付艳秋, 2015. 响应面法优化灵芝三萜回流提取工艺. 中南药学, 13(4):378-382
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |