[1] Bardgett R D,Cook R,Yeates G W,et al. The influence of nematodes on below-ground processes in grassland ecosystems[J]. Plant and Soil,1999,212(1):23-33 [2] 杨凯,高清竹,李玉娥,等. 藏北地区草地退化空间特征及其趋势分析[J]. 地球科学进展,2007(04):410-416 [3] Oreskes N. The scientific consensus on climate change[J]. Science,2004,306(5702):1686-1686 [4] IPCC. Climate change:The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press,2007 [5] Thomas C D,Cameron A,Green R E,et al. Extinction risk fromclimate change[J]. Nature,2004,427(6970):145-148 [6] Grabherr G,Gottfried M,Pauli H. Climate effects on mountain plants[J]. Nature,1994,369(6480):448-450 [7] 郭红玉,德科加,芦光新,等. 模拟增温和添加氮素对高寒草甸草地生产力影响的初步研究[J]. 草地学报,2015,23(02):322-327 [8] Klein J A,Harte J,Zhao X Q. Experimental warming causes large and rapid species loss,dampened by simulated grazing,on the Tibetan Plateau[J]. Ecology Letters,2004,7(12):1170-1179 [9] Yang Y,Wang G X,Klanderud K,et al. Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai-Tibetan Plateau[J]. Plant Ecology&Diversity,2015,8(2):211-218 [10] Liu Y Z,Reich P B,Li G Y,et al. Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity[J]. Ecology,2011,92(6):1201-1207 [11] 薛会英,罗大庆,王鸿源,等. 藏北高寒草甸土壤线虫群落对围封及自由放牧的响应[J]. 土壤学报,2017,54(02):480-492 [12] 薛会英,胡锋,罗大庆. 藏北高寒草甸植物群落对土壤线虫群落的影响[J]. 土壤学报,2013,50(03):507-516 [13] 薛会英,胡锋,罗大庆. 藏北高寒草甸植物群落对土壤线虫群落功能结构的影响[J]. 生态学报,2013,33(05):1482-1494 [14] 王学霞,高清竹,干珠罗布,等. 藏北高寒草甸土壤线虫群落结构对增温的响应[J]. 草业科学,2018,35(6):1528-1538 [15] Geisen S,Snoek L B,ten Hooven F C,et al. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion[J]. Methods in Ecology and Evolution,2018,9(6):1366-1378 [16] He Z L,Xu M Y,Deng Y,et al. Metagenomic analysis reveals amarked divergence in the structure of belowground microbial communities at elevated CO2[J]. Ecology Letters,2010,13(5):564-575 [17] 侯梅锋,何士龙,李栋,等. 连云港海底底泥及青海湖底泥细菌多样性研究[J]. 环境科学,2011,32(9):2681-2688 [18] 张阁,孙翠丽,彭永,等. 16S rRNA基因高通量测序方法检测奶牛场常用干草表面微生物群落结构及多样性[J]. 微生物学通报,2017,44(12):2847-2855 [19] Kerfahi D,Tripathi B M,Porazinska D L,et al. Do tropical rain forest soils have greater nematode diversity than High Arctic tundra? A metagenetic comparison of Malaysia and Svalbard[J]. Global Ecology and Biogeography,2016,25(6):716-728 [20] Porazinska D L,Giblin-Davis R M,Esquivel A,et al. Ecometagenetics confirms high tropical rainforest nematode diversity[J]. Molecular Ecology,2010,19(24):5521-5530 [21] 刘雪松,马玉才,拉巴,等. 西藏自治区那曲地区牧业气候区划[M]. 北京:气象出版社,2003:1-36 [22] 魏兴琥,杨萍,谢忠奎,等. 西藏那曲地区高山嵩草草地的分布与利用[J]. 草地学报,2003(01):67-74 [23] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:23-132 [24] Moroenyane I,Dong K,Singh D,et al. Deterministic processes dominate nematode community structure in the Fynbos Mediterranean heathland of South Africa[J]. Evolutionary Ecology,2016,30(4):685-701 [25] 朱珣之,李强,李扬苹,等. 紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响[J]. 生物多样性,2015,23(05):665-672 [26] 李静心,王艳丽,何宏魁,等. 基于高通量测序技术解析高温大曲和中高温大曲的真菌群落结构[J]. 食品与发酵工业,2018(12):52-59 [27] Matute M M.Soil nematodes of Brassica rapa:influence of temperature and pH[J]. Advances in Natural Science,2013,6(4):20-26 [28] Dong Z K,Hou R X,Chen Q Y,et al. Response of soil nematodes to elevated temperature in conventional and no-tillage cropland systems[J]. Plant and Soil,2013,373(1/2):907-918 [29] Bakonyi G,Nagy P. Temperature-and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland-patterns and mechanisms[J]. Global Change Biology,2000,6(6):697-707 [30] Ruess L,Michelsen A,Schmidt I K,et al. Simulated climate change affecting microorganisms,nematode density and biodiversity in subarctic soils[J].Plant and Soil,1999,212(1):63-73 [31] Stevnbak K S,Maraldo K,Georgieva S,et al. Suppression of soil decomposers and promotion of long-lived,root herbivorous nematodes by climate change[J]. European Journal of Soil Biology,2012,52:1-7 [32] Sohlenius B,Bostrom S.Effects of climate change on soil factors and metazoan microfauna (nematodes tardigrades and rotifers) in a Swedish tundra soil-a soil transplantation experiment[J]. Applied Soil Ecology,1999,12(2):113-128 [33] Simmons B L,Wall D H,Adams B J,et al. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys,Antarctica[J]. Soil Biology and Biochemistry,2009,41(10):2052-2060 [34] Haimi J,Laamanen J,Penttinen R,et al. Impacts of elevated CO2 and temperature on the soil fauna in boreal forests[J]. Applied Soil Ecology,2005,30(2):104-112 [35] Darby B J,Neher D A,Housman D C,et al. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna[J]. Soil Biology and Biochemistry,2011,43(7):1474-1481 [36] Berg M P,Verhoef H A. Ecological characteristics of a nitrogen saturated coniferous forest in The Netherlands[J]. Biology and Fertility of Soils,1998,26(4):258-267 [37] 钱复生,王宗英. 水东枣园土壤动物与土壤环境的关系[J]. 应用生态学报,1995,6(1):44-50 |