[1] Didi Sun,Yuejiao Li,Wenqiang Zhao,et al. Effects of experimental warming on soil microbial communities in two contrasting subalpine forest ecosystems,eastern Tibetan Plateau,China[J]. Journal of Mountain Science,2016,13(8):1442-1452 [2] Zhenzhen Zhao,Shikui Dong,Xiaoman Jiang,et al. Effects of warming and nitrogen deposition on CH4,CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau[J]. Science of the Total Environment,2017,592(1):565-572 [3] 温小成,芦光新. 模拟增温和氮素添加对高寒草地植物群落的影响[J]. 草业与畜牧,2015,1(2):38-43 [4] Changting Wang,Xinquan Zhao,Hongbiao Zi,et al. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Applied Soil Ecology,2017,116(1):30-41 [5] Yong Zhang,Shikui Dong,Qingzhu Gao,et al. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes[J]. Nature,2017,7(43077):1-10 [6] 吴楚,芦光新,德科加,等. 人工增温条件下不同氮素形态比对重齿风毛菊气体交换及其群落生物量的影响[J]. 草地学报,2015,23(6):1129-1135 [7] Sheik C S,Beasley W H,Elshahed M S,et al. Effect of warming and drought on grassland microbial communities[J]. ISME Journal,2011,5(10):1692-1700 [8] Haugwitz M S,Bergmark L,Priemé A,et al. Soil microorganisms respond to five years of climate change manipulations and elevated atmospheric CO2 in a temperate heath ecosystem[J]. Plant and Soil,2014,374(1/2):211-222 [9] Xu G,Jiang H,Zhang Y B,et al. Effect of warming on extracted soil carbon pools of abies faxoniana forest at two elevations[J]. Forest Ecology and Management,2013,310:365-367 [10] Shen S M,Hart P B S. The nitrogen cycle in the Broadbalk wheat experiment:15N-labelled fertilizer residues in soil and in the soil microbial biomass[J]. Soil Biology and Biochemistry,1989,21:529-533 [11] 于树,汪景宽,李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报,2008,28(9):4221-4227 [12] 卢虎,李显刚,姚拓,等. 高寒生态脆弱区"黑土滩"草地植被与土壤微生物数量特征研究[J]. 草业学报,2014,23(5):214-222 [13] 姚拓,龙瑞军,师尚礼,等. 高寒草地不同扰动生境土壤微生物氮素生理群数量特征研究[J]. 土壤学报,2007,44(1):122-129 [14] 赵志山,单志萍,惠慧. 吉林西部羊草草原牧草根际固氮菌的研究[J]. 中国草原,1984,6(3):70-73 [15] 张建贵,蒋永梅,姚拓,等. 不同管理措施对高寒草甸土壤微生物氮素生理群数量影响研究[J]. 草业学报,2017,26(8):65-73 [16] 宗宁,段呈,耿守保,等. 增温施氮对高寒草甸生产力及生物量分配的影响[J]. 应用生态学报,2018,29(1):59-67 [17] 郭红玉,德科加,芦光新,等. 模拟增温和添加氮素对高寒草甸草地生产力影响的初步研究[J]. 草地学报,2015,23(2):322-327 [18] 李欣,李峰科,芦光新,等. 模拟增温对高寒草甸土壤三大类微生物数量的影响[J]. 青海畜牧兽医杂志,2017,47(2):6-11 [19] 刘琳,朱霞,孙庚,等. 模拟增温与施肥对高寒草甸土壤酶活性的影响[J]. 草业科学,2011,28(08):1405-1410 [20] 周华坤,周兴民,赵新全. 模拟增温效应对矮松草草甸影响的初步研究[J]. 植物生态学,2000,24(5):547-553 [21] 权欣,卢光新,李希来,等. 三江源区高寒草甸OTCs模拟增温效应的研究[J]. 草业与畜牧,2016,1(01):19-24 [22] 许光辉,郑洪元. 土壤微生物分析方法手册[M]. 北京:农业出版社,1986:110-122 [23] 王蓓,孙庚,罗鹏,等. 模拟升温和放牧对高寒草甸土壤微生物群落的影响[J]. 应用与环境生物学报,2011,17(2):151-157 [24] 郭继勋,祝廷成. 羊草草原土壤微生物的数量和生物量[J]. 生态学报,1997,17(1):78-82 [25] 谭成玉. 松嫩草原微生物活性对模拟增温及施氮的响应[D]. 吉林:东北师范大学,2010:9-10 [26] 隋鑫,刘丽贾,美清,等. 短花针茅荒漠草原土壤细菌数量及多样性对气候变干、变暖的响应[J]. 天津农业科学,2019,25(5):22-27 [27] 阮维斌,王敬国,张福锁. 连作障碍因素对大豆养分吸收和固氮作用的影响[J]. 生态学报,2003,23(1):22-29 [28] 朱瑞芬,唐凤兰,刘杰淋,等. 羊草草甸草原土壤微生物生物量碳氮对短期施氮的响应[J]. 草地学报,2016,24(3):553-558 [29] 陈松鹤,徐开未,樊高琼,等. 长期施氮对饲草玉米产量、土壤养分和微生物数量的影响[J]. 四川农业大学学报,2019,37(03):314-320 [30] 李昊骏,曹莉,秦舒浩. 缓释尿素对土壤微生物氮素生理群、理化性质及辣椒产量的影响[J]. 甘肃农业大学学报,2017,52(04):58-66 |