[1] PANDEY V C, BAJPAI O, SINGH N. Energy crops in sustainable phytoremediation[J]. Renewable and Sustainable Energy Reviews, 2016, 54(2): 58-73 [2] SIPOS G, SOLTI A, CZECH V, et al. Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture[J]. Plant Physiology and Biochemistry, 2013, 68(7): 96-103 [3] ZHANG H, CHEN X, HE C. Use of Energy Crop (Ricinus communis L. ) for Phytoextraction of Heavy Metals Assisted with Citric Acid[J]. International Journal of Phytoremediation, 2015, 17(7): 632-639 [4] SCHMER M R, VOGEL K P, VARVEL G E, et al. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland[J]. PLOS ONE, 2014, 9(3): e89501 [5] ZHANG X, FU J, LIN G, et al. Switchgrass-based bioethanol productivity and potential environmental impact from marginal lands in china[J]. Energies, 2017, 10(2): 260-274 [6] CHENG Z, YASIR L, NICHOLAS L, et al. Performance of switchgrass and miscanthus genotypes on marginal land in the yellow river delta[J]. Industrial Crops and Products, 2019, 141(12): 111773-111781 [7] 刘长浩, 娄来清, 郭涛, 等. 柳枝稷和坚尼草的耐镉性初步研究[J]. 草业学报, 2015, 24(11): 100-108 [8] CHU Z, MUNIR S, ZHAO G, et al. Linking phytohormones with growth, transport activity and metabolic responses to cadmium in tomato[J]. Plant Growth Regulation, 2020, 90(3): 557-569 [9] SEO M, KOSHIBA T. Complex regulation of ABA biosynthesis in plants[J]. Trends in Plant Science, 2002, (1): 41-48 [10] 韩超, 申海玉, 叶嘉, 等. 外源脱落酸对小麦幼苗抗镉胁迫能力的影响[J]. 西北植物学报, 2012, 32(4): 745-750 [11] 王涛, 唐天娇, 廖佳元, 等. 外源ABA提高甘蓝型油菜抗镉胁迫能力和氮素生理利用效率[J]. 植物营养与肥料学报, 2020, 26(3): 522-531 [12] SU Y, LIU J, LU Z, et al. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation[J]. Environmental & Experimental Botany, 2014, 97(1): 40-48 [13] SHI G, XIA S, YE J, et al. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology[J]. Environmental & Experimental Botany, 2015, 111(3): 127-134 [14] 蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013: 35-178 [15] WEI S, WANG S, LI Y, et al. Root system responses of hyperaccumulator Solanum nigrum L. to Cd[J]. Journal of Soils and Sediments, 2013, 13(6): 1069-1074 [16] 陈良, 隆小华, 郑晓涛, 等. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究[J]. 草业学报, 2011, 20(6): 60-67 [17] 施宠, 王纯利, 黄长福, 等. 镉胁迫对野燕麦幼苗生长及其生理特性的影响[J]. 草地学报, 2015, 23(3): 526-532 [18] 张婍, 李仁英, 徐向华, 等. 土壤镉污染对小麦生长及镉吸收的影响[J]. 农业资源与环境报, 2019, 36(4): 522-527 [19] 孙金金, 鱼小军, 王金辉, 等. 重金属Cu2+、Cd2+和Pb2+对8种禾草种子萌发和幼苗生长的影响[J]. 草地学报, 2018, 26(3): 673-683 [20] 胡冰钰, 方志刚, 娄来清, 等. 14份柳枝稷种质资源苗期耐镉性综合评价[J]. 草业学报, 2019, 28(1): 27-36 [21] 钱海胜, 陈亚华, 王桂萍, 等. 镉在不结球白菜中的积累及外源脱落酸对镉积累的影响[J]. 南京农业大学学报, 2008, 31(4): 61-65 [22] WANG J, LIN L J, LUO L, et al. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanumr photeinocarpum[J]. Environmental Monitoring and Assessment, 2016, 188(3): 182-189 [23] 马倩倩, 刘春阳, 石军, 等. 喷施脱落酸对镉富集植物繁缕生长及其镉积累的影响[J]. 土壤通报, 2016, 47(4): 992-997 [24] LU Q, CHEN S, LI Y, et al. Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes[J]. Environmental Science and Pollution Research, 2020, 27(8): 8719-8731 [25] 李汝佳, 李雪梅. 水杨酸、脱落酸和过氧化氢对镉胁迫小麦幼苗光合及抗氧化酶活性的影响[J]. 生态学杂志, 2007, 26(12): 2096-2099 [26] GUAN L, SCANDALIOS J G. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum[J]. Plant Physiology, 1998, 117(1): 217-224 [27] 游丽娟, 阮成旭, 袁重桂, 等. 外施脱落酸对镉胁迫下青萍生理特性的影响[J]. 福州大学学报, 2019, 47(2): 272-278 |