[1] FLATO G,MAROTZKE J,ABIODUN B,et al. Evaluation of climate models. In:climate change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[J]. Computational Geometry,2013,18(2):95-123 [2] 陆晴,吴绍洪,赵东升. 1982-2013年青藏高原高寒草地覆盖变化及与气候之间的关系[J].地理科学,2017,37(2):292-300 [3] 陈宁,张扬建,朱军涛,等.高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究[J].植物生态学报,2018,42(1):50-65 [4] 潘保田,李吉均.青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报,1996,12(1):108-115 [5] 柴曦,李英年,段呈,等.青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J].植物生态学报,2018,42(1):6-19 [6] FU G,SHEN Z X,SUN W,et al. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau[J]. Journal of Plant Growth Regulation,2015,34(1):57-65 [7] 徐满厚,李晓丽.基于物种多样性与生物量关系的草地群落稳定性对全球变暖的响应研究进展[J].西北植物学报,2021,41(2):348-358 [8] 陈翔,彭飞,尤全刚,等.高寒草甸植被特征对模拟增温的响应——以青藏高原多年冻土区为例[J].草业科学,2016,33(5):825-834 [9] 宗宁,柴曦,石培礼,等.藏北高寒草甸群落结构与物种组成对增温与施氮的响应[J].应用生态学报,2016,27(12):3739-3748 [10] YUAN X,QIN W,CHEN Y,et al. Plateau pika offsets the positive effects of warming on soil organic carbon in an alpine swamp meadow on the Tibetan Plateau[J]. Catena,2021,204:105417 [11] 陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报,2015,60(32):3025-3035 [12] 马丽,徐满厚,翟大彤,等.高寒草甸植被-土壤系统对气候变暖响应的研究进展[J].生态学杂志,2017,36(6):1708-1717 [13] 武倩,韩国栋,王瑞珍,等.模拟增温对草地植物、土壤和生态系统碳交换的影响[J].中国草地学报,2016,38(4):105-114 [14] 张中华,周华坤,赵新全,等.青藏高原高寒草地生物多样性与生态系统功能的关系[J].生物多样性,2018,26(2):111-129 [15] CHEN X,WANG G,TAO Z,et al. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. Science of the Total Environment,2017,601-602(12):1389-1399 [16] 刘永万,白炜,尹鹏松,等.短期增温对长江源区高寒沼泽草甸植物-土壤C,N化学计量及季节变化特征的影响[J].草地学报,2019,27(6):1553-1561 [17] BAI W,WANG G,XI J,et al. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow[J]. European Journal of Soil Biology,2019(92):16-23 [18] YUAN X,CHENG Y,QIN W K,et al. Plant and microbial regulations of soil carbon dynamics under warming in two alpine swamp meadow ecosystems on the Tibetan Plateau[J]. Science of the Total Environment,2021,790:148072 [19] SHI F S,WU Y,WU N,et al. Different growth and physiological responses to experimental warming of two dominant plant species Elymus nutans and Potentilla anserina in an alpine meadow of the eastern Tibetan Plateau[J]. Photosynthetica,2010,48(3):437-445 [20] 乔晓英,马少阳,候会芳.毛乌素湖盆滩地土壤温度对寸草苔生长的影响[J].生态学杂志,2019,38(08):2389-2396 [21] 何建社,张利,刘千里,等.岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应[J].生态学报,2018,38(07):2362-2371 [22] EBRAHIM S,WASSU M,TESSFAYE A. Genetic diversity based on cluster and principal component analyses in potato (Solanum Tuberosum L.) for yield and processing attributes[J]. Journal of Horticulture,2021,8(3):1-6 [23] 张佳平,李丹青,聂晶晶,等.高温胁迫下芍药的生理生化响应和耐热性评价[J].核农学报,2016,30(9):1848-1856 [24] 牟晓明.青藏高原草甸植物在群落和种群层次上对土壤性质影响的差异性[D].兰州:兰州大学,2019:15-16 [25] 白炜,奚晶阳,王根绪.短期增温与施氮对青藏高原高寒沼泽草甸生态系统CO2排放的影响[J].生态学杂志,2019,38(4):927-936 [26] 贡璐,朱美玲,T西甫拉提·特依拜,等.塔里木盆地南缘旱生芦苇生态特征与水盐因子关系[J].生态学报,2014,34(10):2509-2518 [27] LIGHTENTLAHER H K,WELLBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Analysis,1983,11(5):591-592 [28] BATES L S,WALDREN R P,TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207 [29] DHINDSA R S,WANDEKAYI M. Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany,1981,32(1):79-91 [30] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1-2):248-254 [31] EKMEKIC Y,TERZIOGLU S. Effects of oxidative stress induced by paraquat on wild and cultivated wheats[J]. Pesticide Biochemistry&Physiology,2005,83(2-3):69-81 [32] BECANA M,APARRICIO-TEJO P,IRIGOYEN J J,et al. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa[J]. Plant physiology,1986,82(4):1169-1171 [33] 付宝春,薄伟.玉簪抗旱性隶属函数及主成分分析[J].草地学报,2014,22(06):1324-1330 [34] 刘志高,邵伟丽,申亚梅,等.铁线莲品种耐热性分析及评价指标筛选[J].核农学报,2020,34(01):203-213 [35] 王泳超,张颖蕾,闫东良,等.干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J].草业学报,2020,29(6):191-203 [36] 王琼,唐娅,谢涛,等.入侵植物喜旱莲子草和本地种接骨草光合生理特征对增温响应的差异[J].生态学报,2017,37(3):770-777 [37] 张利霞,常青山,侯小改,等. NaCl胁迫对夏枯草幼苗抗氧化能力及光合特性的影响[J].草业学报,2017,26(11):167-175 [38] 任飞,杨晓霞,周华坤,等.青藏高原高寒草甸3种植物对模拟增温的生理生化响应[J].西北植物学报,2013,33(11):2257-2264 [39] 黄河腾,黄剑坚,陈杰,等.不同遮阴环境下木奶果幼苗生长与生理生化的响应[J].生态学杂志,2020,39(5):1538-1547 [40] 刘兵,贾旭梅,朱祖雷,等.盐碱胁迫对垂丝海棠光合作用及渗透调节物质的影响[J].西北植物学报,2019,39(9):1618-1626 [41] 袁嫚嫚,朱建国,刘钢,等.粳稻生育后期剑叶光合日变化和光合色素对大气CO2浓度和温度升高的响应-FACE研究[J].应用生态学报,2018,29(1):167-175 [42] 王义婧,徐胜,何兴元,等.美国薄荷(Monarda didyma L.)对大气增温的生理生态响应[J].生态环境学报,2018,27(12):2217-2224 [43] 张维.梭梭对模拟气候变化因子的生理生态学特征响应[D].石河子:石河子大学,2018:25-26 [44] 徐呈祥.提高植物抗寒性的机理研究进展[J].生态学报,2012,32(24):7966-7980 [45] 张维,贺亚玲,吴泽昂,等.模拟增温对梭梭光合生理生态特征的影响[J].草地学报,2017,25(2):296-302 [46] 董瑜,田昆,肖德荣,等.区域气候变化对纳帕海湖滨植物生理生化特性的影响[J].生态学报,2014,34(19):5570-5578 [47] 杨春勐,代微然,索默,等.增温对滇杨和川杨生长及生理特性的影响[J].西南林业大学学报(自然科学),2018,38(3):63-70 [48] 张秋芳,吕春平,贝昭贤,等.野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响[J].植物生态学报,2016,40(12):1230-1237 [49] 张玥,周瑞莲,梁慧敏,等.白三叶不同叶龄叶片对不同季节温度适应的生理调控机理[J].生态学杂志,2016,35(7):1713-1720 [50] 曲涛,南志标.作物和牧草对干旱胁迫的响应及机理研究进展[J].草业学报,2008(2):126-135 [51] 曾贞,郇慧慧,刘刚,等.增温和升高CO2浓度对桑树幼苗的生长和叶片品质的影响[J].应用生态学报,2016,27(8):2445-2451 [52] 王涛,田雪瑶,谢寅峰,等.植物耐热性研究进展[J].云南农业大学学报(自然科学),2013,28(5):719-726 [53] MANCHON F,LEMOS,BIANCNI,et al. Moderate warming increases PSⅡ performance,antioxidant scavenging systems and biomass production in Stylosanthes capitata Vogel[J]. Environmental and experimental botany,2014(102):58-67 [54] 李以康,冉飞,韩发,等.绿色植物生长调节剂(GGR)对高寒草甸矮嵩草抗氧化生理指标的影响[J].草地学报,2010,18(1):56-60 [55] 吴久赟,廉苇佳,曾晓燕,等.不同品种葡萄对高温的生理响应及耐热性评价[J].西北植物学报,2019,39(6):1075-1084 [56] ANDERSON M,STEWART P. Changes in isozyme profiles of catalase,peroxidase,and glutathione reductase during acclimation to chilling in mesocotyls of Maize seedlings[J]. Plant Physiology,1996,109(4):1247-1257 [57] 杨舒贻,陈晓阳,惠文凯,等.逆境胁迫下植物抗氧化酶系统响应研究进展[J].福建农林大学学报(自然科学版),2016,45(5):481-489 [58] 查倩,奚晓军,和雅妮,等.不同鲜食葡萄品种的高温逆境应答反应研究[J].上海农业学报,2018,034(5):77-83 [59] 肖玉,贾婷婷,赵旭,等.青藏高原腹地退化青藏苔草草原植物生态位的特征[J].中国草地学报,2015,37(1):30-37 [60] PITELKA L E,ASHMUN J W. Physiology and integration of ramets in clonal plants[M]. Population Biology and Evolution of Clonal,1985:399-436 [61] 王洪斌,张煜坤,张大才.青藏苔草形态特征及生物量分配沿水分梯度的变化[J].草地学报,2021,29(3):522-530 [62] 李英年,赵亮,徐世晓,等.祁连山海北高寒湿地植物群落结构及生态特征[J].冰川冻土,2006,28(1):76-84 [63] 杨凯,王根绪,张涛,等.青藏高原多年冻土区不同水分条件的高寒草甸根系功能性状对增温的响应[J].生态学报,2020,40(18):6362-6373 |