[1] 丁磊,柴强,于爱忠,等. 覆膜免耕对玉米间作豌豆农田土壤有机碳和氮的影响[J]. 西北农业学报,2021,30(8):1148-1156 [2] 杨文焕,王铭浩,李卫平,等. 黄河湿地包头段不同地被类型对土壤有机碳的影响[J]. 生态环境学报,2018,27(6):1034-1043 [3] 龚月月,朱新萍,李典鹏,等. 不同土地利用方式下干旱区湿地土壤活性有机碳组分特征[J]. 草业科学,2019,36(8):1944-1952 [4] ABRIL G,MARTINEZ G M,ARTIGAS L F,et al. Amazon River carbon dioxide outgassing fuelled by wetlands[J]. Nature,2014,505(7483):395-398 [5] QI Q,ZHANG D,ZHANG M,et al. Spatial distribution of soil organic carbon and total nitrogen in disturbed Carex tussock wetland[J]. Ecological Indicators,2021,120(23):106936 [6] 延琪瑶,王力,张芸,等. 新疆艾比湖小叶桦湿地3900年以来的植被及环境演变[J]. 应用生态学报,2021. 32(2):486-494 [7] 邰继承,靳振江,崔立强. 不同土地利用下湖北江汉平原湿地起源土壤有机碳组分的变化[J]. 水土保持学报,2011,25(6):124-128 [8] 廖洪凯,李娟,龙健,等. 土地利用及退耕对喀斯特山区土壤活性有机碳的影响[J]. 环境科学,2014,35(1):240-247 [9] 张天雨,葛振鸣,张利权,等. 崇明东滩湿地植被类型和沉积特征对土壤碳、氮分布的影响[J]. 环境科学学报,2015,35(3):836-843 [10] ARDÓN M,HELTON A M,BERNHARDT E S. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands[J]. Biogeochemistry,2016,127(2-3):1-16 [11] 马维伟,李广,宋捷,等. 植被退化对尕海湿地土壤有机碳库及碳库管理指数的影响[J]. 草地学报,2019,27(3):172-179 [12] ZHAO Q,BAI J B,WANG X B,et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta,China-Science Direct[J]. Ecohydrology & Hydrobiology,2020,20(4):537-547 [13] 唐艳梅,马维伟,李广,等. 尕海湿地退化演替过程中土壤有机氮组分的变化特征[J]. 应用生态学报,2021,32(11):4077-4084 [14] 习盼,董倩,张亚楠,等. 盐城滩涂湿地典型植物群落土壤活性有机碳组分分布特征[J]. 生态学杂志,2020,39(11):3623-3632 [15] 王幼奇,夏子书,包维斌,等. 银川鸣翠湖国家湿地公园香蒲、荷花、石菖蒲和芦苇生长区土壤有机碳及其组分含量对比研究[J]. 湿地科学,2020,18(3):294-302 [16] CHANTIGNY M H. Dissolved and water-extractable organic matter in soils:A review on the influence of land use and man agement practices[J]. Geoderma,2003,113(3):357-380 [17] BLAIR G,LEFROY R,LISLE L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research,1995,46(7):393-406 [18] WU J,JOERGENSEN R G,POMMERENING B,et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology & Biochemistry,1990,22(8):1167-1169 [19] 张文敏. 杭州湾南岸土壤有机碳分布特征及空间异质性研究[D]. 南京:南京农业大学,2014:19-22 [20] ZHOU Z H,WANG C K. Reviews and syntheses:Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems[J]. Biogeosciences,2015,12(22):6751-6760 [21] MEDLYN B E,ZAEHLE S,KAUWE M G,et al. Using ecosystem experiments to improve vegetation models[J]. Nature Climate Change,2015,5(6):528-534 [22] XU S,LIU X,LI X,et al. Soil organic carbon changes following wetland restoration:A global meta-analysis[J]. Geoderma,2019(353):89-96 [23] KALBITZ K,SOLINGER S,PARK J H,et al. Controls on the dynamics of dissolved organic matter in soil:A review[J]. Soil Science,2000,165(4):277-304 [24] 林春英,李希来,孙海松,等. 黄河源高寒湿地有机碳组分对不同退化程度的响应[J]. 草地学报,2021,29(7):1540-1548 [25] 李征,韩琳,刘玉虹,等. 滨海盐地碱蓬不同生长阶段叶片C,N,P化学计量特征[J]. 植物生态学报,2012,36(10):1054-1061 [26] 林学政,陈靠山,何培青,等. 种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响[J]. 生态学报,2006(3):801-807 [27] 赵锐锋,张丽华,赵海莉,等. 黑河中游湿地土壤有机碳分布特征及其影响因素[J]. 地理科学,2013,33(3):363-370 [28] 颜安,李周晶,武红旗,等. 不同耕作年限对耕地土壤质地和有机碳垂直分布的影响[J]. 水土保持学报,2017,31(1):291-295 [29] WANG Q,WANG C H,ZHAO B,et al. Effects of growing conditions on the growth of and interactions between salt marsh plants:implications for invasibility of habitats[J]. Biological Invasions,2006,8(7):1547-1560 [30] BOCKHEIM J G,NINKEL K M,NELSON F E. Predicting carbon storage in tundra soils of Arctic Alaska[J]. Soil Science Society of America Journal,2003,67(3):948-950 [31] 罗先香,贾红丽,杨建强,等. 中国北方典型河口芦苇湿地土壤有机碳库比较研究[J]. 中国海洋大学学报:自然科学版,2015,45(3):99-106 [32] 姚世庭,芦光新,周华坤,等. 模拟增温对高寒草甸土壤性质的影响[J]. 草地学报,2021,29(S1):218-224 [33] SCHIPPER L A,PERCIVAL H J,SPARLING G P. An approach for estimating when soils will reach maximum nitrogen storage[J]. Soil Use and Management,2004,20(3):281-286 |