草地学报 ›› 2023, Vol. 31 ›› Issue (4): 929-942.DOI: 10.11733/j.issn.1007-0435.2023.04.001
• 专论与进展 •
陈哲1,5, 金艳霞1, 孙建3, 邵新庆4, 王英典1,5, 赵新全2, 王文颖1,5, 谢惠春1, 张振华2, 张莉1, 杜岩功2, 周华坤2
收稿日期:
2022-06-17
修回日期:
2022-12-04
发布日期:
2023-04-28
通讯作者:
杜岩功,E-mail:ygdu@nwipb.cas.cn;周华坤,E-mail:hkzhou@nwipb.cas.cn
作者简介:
陈哲(1986-),男,汉族,陕西眉县人,博士,副教授,主要从事高寒草地生态系统生态学研究,E-mail:chenzhe@qhnu.edu.cn
基金资助:
CHEN Zhe1,5, JIN Yan-xia1, SUN Jian3, SHAO Xin-qing4, WANG Ying-dian1,5, ZHAO Xin-quan2, WANG Wen-ying1,5, XIE Hui-chun1, ZHANG Zhen-hua2, ZHANG Li1, DU Yan-gong2, ZHOU Hua-kun2
Received:
2022-06-17
Revised:
2022-12-04
Published:
2023-04-28
摘要: 泛北极地区和青藏高原是陆地生态系统重要的有机碳、氮库。在气候变暖驱动下,高纬度或高海拔冻土融化加速,冻土活动层冻融格局改变,土壤有机质分解增加,成为全球重要的温室气体排放源,其对气候变化的“正反馈”效应受到越来越多关注。本文重点综述了近年泛北极和青藏高原冻土区土壤CO2,CH4和N2O三种主要温室气体通量对冻土退化及冻融作用的响应特征和影响机制,探讨了高寒地区生态系统净温室效应与气候变暖的相互关系,并简要提出了目前冻土区土壤碳排放和氮转化关键过程研究中需要加强的方面,旨在为继续深入开展气候变化背景下冻土碳氮循环研究提供参考。
中图分类号:
陈哲, 金艳霞, 孙建, 邵新庆, 王英典, 赵新全, 王文颖, 谢惠春, 张振华, 张莉, 杜岩功, 周华坤. 全球变暖对高寒冻土区温室气体通量影响研究进展[J]. 草地学报, 2023, 31(4): 929-942.
CHEN Zhe, JIN Yan-xia, SUN Jian, SHAO Xin-qing, WANG Ying-dian, ZHAO Xin-quan, WANG Wen-ying, XIE Hui-chun, ZHANG Zhen-hua, ZHANG Li, DU Yan-gong, ZHOU Hua-kun. A Review on the Impact of Global Warming to Greenhouse Gas Flux in Frozen Ground Region[J]. Acta Agrestia Sinica, 2023, 31(4): 929-942.
[1] 赵林,盛煜.青藏高原多年冻土及变化[M]. 北京:科学出版社,2019:1-9 [2] OBU J,WESTERMANN S,BARTSCH A,et al. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000-2016 at 1 km2 Scale[J]. Earth-Science Reviews,2019,193:299-316 [3] ZOU D F,ZHAO L,SHENG Y,et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere,2017,11(6):2527-2542 [4] SCHUUR E,MCGUIRE A D,SCHADEL C,et al. Climate change and the permafrost carbon feedback[J]. Nature,2015,520(7546):171-179 [5] DING J Z,LI F,YANG G B,et al. The Permafrost Carbon Inventory on the Tibetan Plateau:a New Evaluation Using Deep Sediment Cores[J]. Global Change Biology,2016,22(8):2688-2701 [6] 王蓝翔,董慧科,龚平,等. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土,2021,43(5):1365-1382 [7] BROWN J,FERRIANS O,HEGINBOTTOM J A,et al. Circum-Arctic Map of Permafrost and Ground-Ice Conditions,Version 2[EB/OL]. https://nsidc.org/data/ggd318/versions/2,2022-06-17 [8] KATEY,WALTER,ANTHONY,et al. 21 st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes[J]. Nature Communications,2018,9(1):3262 [9] WANG T,YANG D,YANG Y,et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau[J]. Science Advances,2020,6(19):eaaz3513 [10] FRIEDLINGSTEIN P COX P,BETTS R,et al. Climate-Carbon Cycle Feedback Analysis:Results from the C4MIP Model Intercomparison[J]. Journal of Climate,2006,19(14):3337-3353 [11] QIAN H,JOSEPH R,ZENG N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections[J]. Global Change Biology,2010,16(2):641-656 [12] SCHAEFER K,ZHANG T,BRUHWILER L,et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus,2011,63(2):165-180 [13] KOVEN C D,LAWRENCE D M,RILEY W J. Permafrost carbon climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(12):3752-3757 [14] MCGUIRE A D,LAWRENCE D M,KOVEN C,et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change[J]. Proceedings of the National Academy of Sciences of the United States of America,20181,15(15):3882-3887 [15] SCHUUR E,ABBOTT B W,BOWDEN W B,et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013,119(2):359-374 [16] SCHUUR E,ABBOTT B. High risk of permafrost thaw:Northern soils will release huge amounts of carbon in a warmer world [J]. Nature,2011,480(7375):32-33 [17] HARDEN J W,KOVEN C D,PING C L,et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters,2012,39(15):L15704 [18] GROGAN P,MICHELSEN A,AMBUSP,et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J].Soil Biology and Biochemistry,2004,36(4):641-654 [19] 孙辉,秦纪洪,吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤,2008,40(4):505-509 [20] CHAI Y J,ZENG X B,E S Z,et al. Effects of freeze-thaw on aggregate stability and the organic carbon and nitrogen enrichment ratios in aggregate fractions[J]. Soil Use Management,2014,30:507-516 [21] KREYLING J,PERSOH D,WERNER S,et al. Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of holcus lanatus and calluna vulgaris[J]. Plant Soil,2012,353:19-31 [22] PEREZ-MON C,FROSSARD A,FREY B. Functional and structural responses of arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies[J]. Frontiers in Microbiology,2020,11:982 [23] WU M H,CHEN S Y,CHEN J W,et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(25):e2025321118 [24] 陈哲,杨世琦,张晴雯,等. 冻融作用对土壤氮素损失及有效性的影响[J]. 生态学报,2016,36(4):1083-1094 [25] 胡仲豪,常顺利,张毓涛,等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应[J]. 生态学报,2019,39(2):571-579 [26] PU J H,JIANG N,JUAN Y H,et al. Effects of freeze-thaw on dissolved nitrogen pool,nitrogen transformation processes and diversity of bacterial community in temperate soils[J]. The journal of applied ecology,2020,31(9):2893-2902 [27] JIANG N,JUANY,TIAN L,et al. Soil water contents control the responses of dissolved nitrogen pools and bacterial communities to freeze-thaw in temperate soils[J]. BioMed Research International,2020:6867081 [28] MAO C,KOU D,CHEN L Y,et al. Permafrost nitrogen status and its determinants on the Tibetan Plateau[J]. Global Change Biology,2020,26(9):5290-5302 [29] CHEN L,LIU L,QIN S,et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale[J]. Nature Communications,2019,10:5112 [30] RISK N,SNIDER D,WAGNER-RIDDLE C. Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles[J]. Canadian Journal of Soil Science,2013,93:401-414 [31] BISKABORN B K,SMITH S L,NOETZLI J,et al. Permafrost is warming at a global scale[J]. Nature Communications,2019,10(1):264 [32] SMITH S L,O'NEILL H B,ISAKSEN K,et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment,2022,3(1):10-23 [33] STRANEO F,SUTHERLANG D A,HOLLAND D,et al. Characteristics of ocean waters reaching Greenland’s glaciers[J]. Annals of Glaciology,2012,53(60):202-210 [34] MUDRYK L R,KUSHNER P J,DERKSEN C,et al. Snow cover response to temperature in observational and climate model ensembles[J]. Geophysical Research Letters,2017,44(2):919-926 [35] BISKABORN B K,LANCKMAN J P,LANTUIT H,et al. The new database of the Global Terrestrial Network for Permafrost (GTN-P)[J]. Earth System Science Data,2015,7(2):245-259 [36] 蔡红艳,韩冬锐,杨林生,等. 泛北极地区多年冻土活动层厚度演变[J]. 遥感学报,2020,24(8):1045-1057 [37] AALTO J,KARJALAINEN O,HJORT J et al. Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness[J]. Geophysical Research Letters,2018,45(10):4889-4898 [38] KUANG X X,JIU J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research Atmospheres,2016,121(8):3979-4007 [39] 秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展,2014,33(7):874-883 [40] GUO D,WANG H. Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletin,2014,59(20):2439-2448 [41] DING J Z,CHEN L Y,JI C J,et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience,2017,10:420-424 [42] 林笠,王其兵,张振华,等. 温暖化加剧青藏高原高寒草甸土非生长季冻融循环[J]. 北京大学学报:自然科学版,2017,53(1):171-178 [43] LIU F T,KOU D,CHEN Y L,et al. Altered microbial structure and function after thermokarst formation[J]. Global Change Biology,2021,27:823-835 [44] PENG X,ZHANG T,FRAUENFELD O,et al. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere[J]. Journal of climate,2018,31(7):251-266 [45] WAN G N,YANG M X,LIU Z C,et al. The precipitation variations in the Qinghai-Xizang (Tibetan) Plateau during 1961-2015[J]. Atmosphere,2017,8:80 [46] LI W B,Wu J B,BAI E,et al. Response of terrestrial nitrogen dynamics to snow cover change:A meta-analysis of experimental manipulation[J]. Soil Biology & Biochemistry,2016,100:51-58 [47] 冉洪伍,范继辉,黄菁. 藏北高寒草地土壤冻融过程水热变化特征[J]. 草业科学,2019,36(4):980-990 [48] 马俊杰,李韧,刘宏超,等. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土,2020,42(1):195-204 [49] LIBBY M D,VANDERZAAG A C,GREGORICH E G,et al. An improved laboratory method shows that freezing intensity increases N2O emissions[J]. Canadian Journal of Soil Science,2020,100(2):136-149 [50] HUGELIUS G,BOCKHEIM J G,CAMILL P,et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region[J]. Earth System Science Data,2013,5(2),393-402 [51] HUGELIUS G,STRAUSS J,ZUBRZYCKI S,et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences,2014,11(23):6573-6593 [52] 王根绪,程国栋,沈永平. 青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土,2002(6):693-700 [53] LOISEL J,YU Z,BEILMAN D W,et al. A Database and synthesis of northern peatland soil properties and holocene carbon and nitrogen accumulation[J]. The Holocene,2014,24(9):1028-1042 [54] KOU D,DING J,LI F,et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region[J]. Science of the Total Environment,2019,650:1795-1804 [55] 张亚亚,郭颖,刘海红,等. 青藏高原表土有机碳、全氮含量分布及其影响因素[J]. 生态环境学报,2018,27(5):866-872 [56] WANG Y,SONG C,YU L,et al. Convergence in temperature sensitivity of soil respiration:Evidence from the Tibetan alpine grasslands[J]. Soil Biology and Biochemistry,2018,122:50-59 [57] DAVIDSON E A,JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(7081):165-173 [58] WANG Y,LIU H,CHUNG H,et al. Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland[J]. Global Biogeochemical Cycles, 2014,28(10):9-20 [59] SCHÄDEL C,BADER K F,SCHUUR E,et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change,2016,6(10):950-953 [60] LI J Q,YAN D,PENDALL E,et al. Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions[J]. Soil Biology and Biochemistry,2018,126:82-90 [61] SCHÄDEL C,SCHUUR E,BRACHO R,et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data[J]. Global Change Biology,2014,20(2):641-652 [62] CHEN L,LIANG J,QIN S,et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau[J]. Nature Communications,2016,7:13046 [63] CHEN Y,HAN M,YUAN X,et al. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau[J]. Global Change Biology,2022,28(10):1618-1629 [64] SCHUUR E,VOGEL J G,CRUMMER K G,et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature,2009,459(7246):556-559 [65] STEVEN B,POLLARD W H,GREER C W,et al. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic[J]. Environmental Microbiology,2010,10(12):3388-3403 [66] HENRY H A L. Climate change and soil freezing dynamics:historical trends and projected changes[J]. Climatic Change,2008,87:421-434 [67] NATALI S M,WATTS J D,ROGERS B M,et al. Large loss of CO2 in winter observed across the northern permafrost region[J]. Nature Climate Change,2019,9(12):852-857 [68] 王广帅,杨晓霞,任飞,等. 青藏高原高寒草甸非生长季温室气体排放特征及其年度贡献[J]. 生态学杂志,2013,32(8):1994-2001 [69] STIEGLITZ M,DÉRY S J,ROMANOVSKY V E,et al. The role of snow cover in the warming of arctic permafrost[J]. Geophysical Research Letters,2003,30(13):54-51 [70] GROFFMAN P M,DRISCOLL C T,FAHEY T J,et al. Colder soils in a warmer world:A snow manipulation study in a northern hardwood forest ecosystem[J]. Biogeochemistry,2001,56(2):135-150 [71] WANG Q,LV W,LI B,et al. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost[J]. Global Change Biology,2020,26(4):2630-2641 [72] OLEFELDT D,GOSWAMI S,GROSSE G,et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications,2016,7,13043 [73] DAI L C,GUO X W,ZHANG F W,et al. Seasonal dynamics and controls of deep soil water infiltration in the seasonally-frozen region of the Qinghai-Tibet plateau[J]. Journal of Hydrology,2019,571:740-748 [74] 张贤,朱求安,杨斌,等. 基于过程模型的青藏高原湿地甲烷排放格局评估[J]. 生态学报,2020,40(9):3060-3071 [75] IPCC:MASSON-DELMOTTE V,ZHAI P,PIRANI A,et al. Climate Change:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press,2021:1 [76] TREAT C C,NATALI S M,ERNAKOVICH J,et al. A pan-Arctic synthesis of CH4and CO2 production from anoxic soil incubations[J]. Global Change Biology,2015,21(7):2787-2803 [77] OLEFELDT D,TURETSKY M R,CRILL P M,et al. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones[J]. Global Change Biology,2013,19(2):589-603 [78] PAUDEL R,MAHOWALD N M,HESS P G M,et al. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC[J]. Environmental Research Letters,2016,11(3):034020 [79] KAPLAN,JED O. Wetlands at the Last Glacial Maximum:Distribution and methane emissions[J]. Geophysical Research Letters,2002,29(6):1079 [80] LI F,Yang G B,Peng Y F,et al. Warming Effects on Methane Fluxes Differ Between Two Alpine Grasslands with Contrasting Soil Water Status[J]. Agricultural and forest meteorology,2020,290:107988 [81] ZHANG Z H,WANG G S,WANG H,et al. Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau[J]. Applied Soil Ecology,2021,167:104061 [82] SONG W,WANG H,WANG G,et al. Methane emissions from an alpine wetland on the Tibetan Plateau:Neglected but vital contribution of the nongrowing season[J]. Journal of Geophysical Research Biogeosciences,2015,120(8):1475-1490 [83] SONG C,WANG Y,WANG Y,et al. Emission of CO2,CH4 and N2O from freshwater marsh during freeze-thaw period in Northeast of China[J]. Atmospheric Environment,2006,40(35):6879-6885 [84] 陈哲,韩瑞芸,杨世琦,等. 东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J]. 农业环境科学学报,2016,35(2):387-395 [85] JEAN L M,PIERRE R. Production,oxidation,emission and consumption of methane by soils:A Review[J]. European journal of soil biology,2001,37(1):25-50 [86] DÖRSCH P,PALOJARVI A,MOMMERTZ S. Overwinter greenhouse gas fluxes in two contrasting agricultural habitats[J]. Nutrient Cycling in Agroecosystems,2004,70(2):117-133 [87] LI F,PENG Y,NATALI S M,et al. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients[J]. Ecology,2017,98(11):2851-2859 [88] ZHANG X Z,YANG Y P,PIAO S L,et al. Ecological change on the Tibetan Plateau[J]. Chinese Science Bulletin,2015,60,(32):3048-3056 [89] WEI D,QI Y,MA Y,et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(33):2015283118 [90] LIU H Y,MI Z R,LIN L,et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Science of the United States of America,2018,115(16):4051-4056 [91] PEDERSEN E P,ELBERLING B,MICHELSEN A. Foraging deeply:Depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic[J]. Global Change Biology,2020,26(11):6523-6536 [92] PU Y,WANG D,LI M,et al. Effects of alpine marsh degradation on soil phytoliths and phytolith-occluded carbon on the Zoige Plateau,China[J]. Journal of Soils and Sediments,2021,21:1730-1742 [93] GAO W,SUN W,XU X. Permafrost response to temperature rise in carbon and nutrient cycling:Effects from habitat-specific conditions and factors of warming[J]. Ecology and Evolution,2021,11(22):16021-16033 [94] GAO W,YAN D. Warming suppresses microbial biomass but enhances N recycling[J]. Soil Biology and Biochemistry,2019,131:111-118 [95] CRAINE J M,ELMORE A J,WANG L,et al. Isotopic evidence for oligotrophication of terrestrial ecosystems[J]. Nature Ecology & Evolution,2018,2(11):1735-1744 [96] WANG J,WU Q,YUAN Z,et al. Soil respiration of alpine meadow is controlled by freeze-thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau[J]. The Cryosphere,2020,14(9):2835-2848 [97] VOIGT C,MARUSHCHAK M E,ABBOT B W,et al. Nitrous oxide emissions from permafrost-affected soils[J]. Nature Reviews Earth & Environment,2020,1:420-434 [98] MARUSHCHAK M E,KERTTULA J,DIÁKOVÁ,et al. Thawing Yedoma permafrost is a neglected nitrous oxide source[J]. Nature Communications,2021,12(1):7107 [99] ZHANG L W,ZHANG S,XIA X H,et al. Unexpectedly Minor Nitrous Oxide Emissions from Fluvial Networks Draining Permafrost Catchments of the East Qinghai-Tibet Plateau[J]. Nature Communications,2022,13(1):950-950 [100] WU H H,XU X K,CHENG W G,et al. Dissolved organic matter and inorganic N jointly regulate greenhouse gases fluxes from forest soils with different moistures during a freeze-thaw period[J]. Soil Science and Plant Nutrition,2020,66:163-176 [101] WOLF B,KIESE R,CHEN W,et al. Modeling N2O emissions from steppe in Inner Mongolia,China,with consideration of spring thaw and grazing intensity[J]. Plant & Soil,2012,350(1-2):297-310 [102] CHEN Z,YANG S Q,ZHANG A P,et al. Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in northeast China[J]. Journal of Integrative Agriculture,2018,17(1):231-246 [103] 周旺明,秦胜金,刘景双,等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报,2011,30(4):806-811 [104] TEEPE R,BERNARD L. Variability of CO2 and N2O Emissions During Freeze-Thaw Cycles:Results of Model Experiments on Undisturbed Forest-Soil Cores[J]. Journal of plant nutrition and soil science,2004,167(2):153-159 [105] SORENSEN P O,FINZI AC,MARC-ANDRE G,et al. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology and Biochemistry,2018,116:39-47 [106] CHEN Z,GE S D,ZHANG Z H,et al. Soil moisture but not warming dominates nitrous oxide emissions during freeze-thaw cycles in a Qinghai-Tibetan Plateau alpine meadow with discontinuous permafrost[J]. Frontiers in Ecology and Evolution,2021,9:676027 [107] 徐欢,王芳芳,李婷,等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报,2020,40(10):3168-3182 [108] MAO C,KOU D,WANG G,et al. Trajectory of topsoil nitrogen transformations along a thermo erosion gully on the Tibetan Plateau[J]. Journal of Geophysical Research Biogeosciences,2019,124(5):1342-1354 [109] BRUIJN A M G D,BUTTERBACH-BAHL K,BLAGODATSKY S,et al. Model evaluation of different mechanisms driving freeze-thaw N2O emissions[J]. Agriculture Ecosystems & Environment,2009,133(3-4):196-207 [110] LUDWIG B,W0LF I,TEEPE R. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science,2004,167(6):678-684 [111] ÖQUIST M G,NILSSON M,S RENSSON F,et al. Nitrous oxide production in a forest soil at low temperatures-processes and environmental controls[J].FEMS Microbiology Ecology,2004,49(3):371-378 [112] YANAI Y,TOYOTA K,OKAZAKI M. Response of denitrifying communities to successive soil freeze-thaw cycles[J]. Biology and Fertility of Soils,2007,44(1):113-119 [113] CHERKAUER K A,BOWLING L C,NAZ B. Treatise on Geomorphology[M]. New York:Academic Press,2013:151-172 [114] 蔡延江,丁维新,项剑. 农田土壤N2O和NO排放的影响因素及其作用机制[J]. 土壤,2012,44(6):881-887 [115] YANG G,PENG Y,MARUSHCHAK M E,et al. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw[J]. Environmental Science & Technology,2018,52(16):9162-9169 [116] SANDERS-DEMOTT R,SORENSEN P O,REINMANN A B,et al. Growing season warming and winter freeze-thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem[J]. Biogeochemistry,2018,137(3):337-349 [117] KOU D,YANG G,LI F,et al. Progressive nitrogen limitation across the Tibetan alpine permafrost region[J]. Nature Communications,2020,11:3331 [118] KLEIN J A,HARTE J,ZHAO X Q,et al. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau[J]. Ecosystems,2007,11(5):775-789 [119] LV W,LUO C,ZHANG L,et al. Net neutral carbon responses to warming and grazing in alpine grassland ecosystems[J]. Agricultural and Forest Meteorology,2020,280:107792 [120] 陈哲,徐巍,门双,等. 祁连山岛状冻土活动层土壤氮库对模拟冻融响应[J]. 草地学报,2023,31(1):19-28 [121] 方精云. 碳中和的生态学透视[J]. 植物生态学报,2021,45(11):1173-1176 [122] 王云英,裴薇薇,郭小伟,等. 青藏高原高寒湿地生态系统碳水通量与水分利用效率研究[J].草地学报,2022,30(5):1037-1042 [123] 刘长雨,谢保鹏,杨洁,等. 青藏高原不同退化梯度下植被蒸散发的时空格局研究[J]. 草地学报,2023,31(1):252-262 |
[1] | 陈哲, 徐巍, 门双, 张振华, 张中华, 王英典, 赵新全, 王文颖, 孙建, 邵新庆, 杜岩功, 周华坤. 祁连山岛状冻土活动层土壤氮库对模拟冻融响应[J]. 草地学报, 2023, 31(1): 19-28. |
[2] | 刘长雨, 谢保鹏, 杨洁, 陈英, 裴婷婷. 青藏高原不同退化梯度下植被蒸散发的时空格局研究[J]. 草地学报, 2023, 31(1): 252-262. |
[3] | 费璇, 锁才序, 向双, 孙书存. 青藏东缘高寒草甸植物群落结构及功能群特征对长期季节放牧的响应[J]. 草地学报, 2022, 30(8): 1954-1963. |
[4] | 马凯凯, 徐长林, 李颖, 魏孔涛, 白梅梅, 刘媛媛, 鱼小军. 高寒草甸冷季牧场不同休牧期对土壤种子库的影响[J]. 草地学报, 2022, 30(8): 2100-2107. |
[5] | 吉珍霞, 裴婷婷, 陈英, 侯青青, 谢保鹏, 吴华武. 2001—2020年青藏高原草地NDVI时空变化及驱动因子分析[J]. 草地学报, 2022, 30(7): 1873-1881. |
[6] | 邵梓桐, 秦彧. 高原鼠兔干扰对高寒草地碳循环的影响研究进展[J]. 草地学报, 2022, 30(5): 1086-1094. |
[7] | 刘小龙, 胡健, 周青平, 曹全恒, 孙梅玲, 陈雪玲, 杨丽雪. 若尔盖高原典型草地灌丛化对植被特征和土壤养分的影响[J]. 草地学报, 2022, 30(4): 901-908. |
[8] | 周泽, 姚拓, 史潭梅, 付卫刚, 贺善睦, 杨晓蕾, 高丽珍, 李建宏. 菌剂对高寒地区土壤微生物群落结构及固氮菌群的影响[J]. 草地学报, 2022, 30(10): 2609-2616. |
[9] | 张小芳, 张春平, 杨增增, 李彩弟, 杨晓霞, 刘文亭, 俞旸, 董全民. 单播措施下三江源区高寒退化草地恢复效果评估[J]. 草地学报, 2022, 30(10): 2834-2844. |
[10] | 张豪睿, 付刚. 藏北高寒草地土壤真菌群落系统发育多样性对放牧的响应[J]. 草地学报, 2022, 30(1): 21-28. |
[11] | 李若玮, 叶冲冲, 王毅, 韩国栋, 孙建. 基于InVEST模型的青藏高原碳储量估算及其驱动力分析[J]. 草地学报, 2021, 29(S1): 43-51. |
[12] | 兰翔宇, 叶冲冲, 王毅, 曾涛, 孙建. 1995—2014年青藏高原水源涵养功能时空演变特征及其驱动力分析[J]. 草地学报, 2021, 29(S1): 80-92. |
[13] | 姚喜喜, 王立亚, 严振英, 李泉林, 王有彬, 马秉云, 雷延民, 周睿, 谢久祥. 青藏高原典型草地牧草营养品质和消化率特征及其相关性[J]. 草地学报, 2021, 29(S1): 113-120. |
[14] | 张中华, 马丽, 周秉荣, 宋明华, 徐文华, 邓艳芳, 王芳, 佘延娣, 张骞, 姚步青, 马真, 周华坤. 高寒草甸优势种功能多样性对增温和模拟放牧的响应[J]. 草地学报, 2021, 29(S1): 225-232. |
[15] | 王谭国艳, 马志远, 李沛洋, 郭俊宏, 张嘉懿, 蒋胜竞. 短期增温对青藏高原高寒草甸不同植物根际丛枝菌根真菌的影响[J]. 草地学报, 2021, 29(9): 1959-1966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||