[1] ZHANG Z P, FU X D, SHENG Q, et al. Effect of rainfall pattern and crack on the stability of a red bed slope:a case study in Yunnan Province[J]. Advances in Civil Engineering, 2021(1):6658211 [2] SONG L L, TIAN Q, LI G, et al. Variation in characteristics of leaf functional traits of alpine vegetation in the Three-River Headwaters Region, China[J]. Ecological Indicators, 2022, 145(3):109557 [3] OKTAVIA D, JIN G Z. Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest[J]. Basic and Applied Ecology, 2020, 49(1):22-33 [4] WEBER A, HAMISH KIMMINS J P, GILBERT B, et al. Multiple-pathway succession in coastal Tsuga heterophylla, Thuja plicata, and Abies amabilis forests on northeastern Vancouver Island, British Columbia[J]. Canadian Journal of Forest Research, 2014, 44(10):1145-1155 [5] 赵坤, 韩国栋. 荒漠草原优势种功能性状对不同放牧强度的响应[J]. 草地学报, 2023, 31(3):649-656 [6] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827 [7] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339 [8] KE M, WANG W J, ZHOU Q, et al. Response of leaf functional traits to precipitation change:A case study from tropical woody tree[J]. Global Ecology and Conservation, 2022, 37:e02152 [9] LI W J, LIU S S, LI J H, et al. Plant traits response to grazing exclusion by fencing assessed via multiple classification approach:a case from a subalpine meadow[J]. Polish Journal of Ecology, 2019, 67(1):33 [10] HOVENDEN M J, NEWTON P C D, WILLS K E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide[J]. Nature, 2014, 511(7511):583-586 [11] FAY P A, CARLISLE J D, KNAPP A K, et al. Productivity responses to altered rainfall patterns in a C4-dominated grassland[J]. Oecologia, 2003, 137(2):245-251 [12] PICOTTE J J, ROSENTHAL D M, RHODE J M, et al. Plastic responses to temporal variation in moisture availability:consequences for water use efficiency and plant performance[J]. Oecologia, 2007, 153(4):821-832 [13] 古琛, 贾志清, 何凌仙子, 等. 恢复年限对高寒中间锦鸡儿群落组成和多样性的影响[J]. 草业科学, 2022, 39(7):1303-1311 [14] 宋乃平, 杨明秀, 王磊, 等. 荒漠草原区人工柠条林土壤水分周年动态变化[J]. 生态学杂志, 2014, 33(10):2618-2624 [15] 张立恒, 王学全, 贾志清, 等. 高寒沙地不同林龄中间锦鸡儿人工林根系分布特征[J]. 干旱区资源与环境, 2018, 32(11):163-168 [16] 李清雪, 贾志清, 何凌仙子, 等. 降雨格局对高寒沙地中间锦鸡儿幼苗生长的影响[J]. 干旱区资源与环境, 2022, 36(4):120-125 [17] 高娅, 何凌仙子, 贾志清, 等. 降雨对高寒沙地不同林龄中间锦鸡儿水分利用特征的影响[J]. 应用生态学报, 2021, 32(6):1935-1942 [18] 田娜, 古君龙, 杨新国, 等. 中间锦鸡儿冠层降雨再分配特征[J]. 干旱区研究, 2019, 36(4):854-862 [19] 田娜, 古君龙, 杨新国, 等. 荒漠草原中间锦鸡儿冠层截留特征[J]. 生态学报, 2019, 39(14):5279-5287 [20] LIU W S, QIU K Y, XIE Y Z, et al. Years of sand fixation with Caragana korshinskii drive the enrichment of its rhizosphere functional microbes by accumulating soil N[J]. PeerJ, 2022, 10:e14271 [21] VIOLLE C, NAVAS M L, VILE D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5):882-892 [22] 春风, 张峰, 吴永胜, 等. 不同放牧强度对短花针茅荒漠草原生物多样性的影响[J]. 草地学报, 2024, 32(3):848-858 [23] WRIGHT I J, WESTOBY M. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species[J]. Functional Ecology, 2000, 14(1):97-107 [24] 李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3):425-435 [25] 黄雅茹, 马迎宾, 郝玉光, 等. 乌兰布和沙漠绿洲防护林杨树叶片性状研究[J]. 中国农业科技导报, 2020, 22(5):42-50 [26] 杨巧, 朱润军, 杨畅宇, 等. 基于树形结构的木棉叶功能性状差异性研究[J]. 生态学报, 2022, 42(7):2834-2842 [27] 朱蔚娜, 张国龙, 张璞进, 等. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6):606-616 [28] 费璇, 朱莎, 彭幼红, 等. 青藏高原东缘高寒草甸季节性放牧下植物功能性状多样性与群落结构特征的联系[J]. 应用与环境生物学报, 2024,30(3):449-457 [29] SULTAN S E. Phenotypic plasticity for plant development, function and life history[J]. Trends in Plant Science, 2000, 5(12):537-542 [30] 魏圆慧, 梁文召, 韩路, 等. 胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报, 2021, 41(13):5368-5376 [31] 董雪, 辛智鸣, 李永华, 等. 沙冬青(Ammopiptanthus mongolicus)叶性状对环境因子的响应[J]. 中国沙漠, 2019, 39(6):126-134 [32] REICH P B, WALTERS M B, ELLSWORTH D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span:a test across biomes and functional groups[J]. Oecologia, 1998, 114(4):471-482 [33] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 2005, 166(2):485-496 [34] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地植物功能性状的尺度变异及关联[J]. 中国沙漠, 2016, 36(1):20-26 [35] LOZANO Y M, AGUILAR-TRIGUEROS C A, FLAIG I C, et al. Root trait responses to drought are more heterogeneous than leaf trait responses[J]. Functional Ecology, 2020, 34(11):2224-2235 [36] HEILMEIER H. Functional traits explaining plant responses to past and future climate changes[J]. Flora, 2019, 254:1-11 [37] 张晶, 左小安. 沙质草地植物功能性状对放牧、增水、氮添加及其耦合效应的响应机制[J]. 生态学报, 2021, 41(18):7153-7167 [38] REICH P B. The world-wide 'fast-slow’ plant economics spectrum:a traits manifesto[J]. Journal of Ecology, 2014, 102(2):275-301 [39] GARNIER E, LAURENT G, BELLMANN A, et al. Consistency of species ranking based on functional leaf traits[J]. New Phytologist, 2001, 152(1):69-83 [40] CASPER B B, FORSETH I N, KEMPENICH H, et al. Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava[J]. Functional Ecology, 2001, 15(6):740-747 [41] 徐飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报, 2010, 32(1):24-30 [42] 李永华, 罗天祥, 卢琦, 等. 青海省沙珠玉治沙站17种主要植物叶性因子的比较[J]. 生态学报, 2005, 25(5):994-999 [43] 杨治平, 张强, 王永亮, 等. 晋西北黄土丘陵区小叶锦鸡儿人工灌丛土壤水分动态研究[J]. 中国生态农业学报, 2010, 18(2):352-355 [44] 刘波, 余艳峰, 张贇齐, 等. 亚热带常绿阔叶林不同林龄细根生物量及其养分[J]. 南京林业大学学报(自然科学版), 2008, 32(5):81-84 [45] 王国华, 宋冰, 席璐璐, 等. 晋西北丘陵风沙区不同林龄人工柠条生长与繁殖动态特征[J]. 应用生态学报, 2021, 32(6):2079-2088 [46] WANG Y Q, SHAO M A, SHAO H B. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China[J]. Journal of Hydrology, 2010, 381(1/2):9-17 [47] 王永强, 吕雯, 马晓梅, 等. 宁南带状柠条林地根系及土壤水分养分分布特征[J]. 西北林学院学报, 2023, 38(1):42-49 |