[1] SARDANS J, RIVAS-UBACH A, PEÑUELAS J. The C:N:P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(1):33-47 [2] MCSHERRY M E, RITCHIE M E. Effects of grazing on grassland soil carbon:a global review[J]. Global Change Biology, 2013, 19(5):1347-1357 [3] 自然资源部. 2023年中国自然资源公报[Z]. 北京:自然资源部, 2024 [4] WHITE R P, MURRAY S, ROHWEDER M. Pilot analysis of global ecosystems:Grassland ecosystems[J]. World Resources Institute, 2000, 4(6):275 [5] YANG J J, LI A Y, YANG Y F, et al. Soil organic carbon stability under natural and anthropogenic-induced perturbations[J]. Earth-Science Reviews, 2020, 205:103199 [6] CHANG Q, WANG L, DING S W, et al. Grazer effects on soil carbon storage vary by herbivore assemblage in a semi-arid grassland[J]. Journal of Applied Ecology, 2018, 55(5):2517-2526 [7] KELLER A A, GOLDSTEIN R A. Impact of carbon storage through restoration of drylands on the global carbon cycle[J]. Environmental Management, 1998, 22(5):757-766 [8] 赵娜, 庄洋, 赵吉. 放牧和补播对草地土壤有机碳和微生物量碳的影响[J]. 草业科学, 2014, 31(3):367-374 [9] 李世卿, 王先之, 郭正刚, 等. 短期放牧对青藏高原东北边缘高寒草甸土壤及微生物碳氮含量的影响[J]. 中国草地学报, 2013, 35(1):55-60, 66 [10] 李春莉, 赵萌莉, 韩国栋, 等. 不同放牧压力下荒漠草原土壤有机碳特征及其与植被之间关系的研究[J]. 干旱区资源与环境, 2008, 22(5):134-138 [11] 闫瑞瑞, 辛晓平, 王旭, 等. 不同放牧梯度下呼伦贝尔草甸草原土壤碳氮变化及固碳效应[J]. 生态学报, 2014, 34(6):1587-1595 [12] ELMORE A J, ASNER G P. Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest[J]. Global Change Biology, 2006, 12(9):1761-1772 [13] MILCHUNAS D G, LAUENROTH W K. Quantitative effects of grazing on vegetation and soils over a global range of environments[J]. Ecological Monographs, 1993, 63(4):327-366 [14] BORENSTEIN M, HIGGINS J P T. Meta-analysis and subgroups[J]. Prevention Science, 2013, 14(2):134-143 [15] HITCHCOCK D J, ANDERSEN T, VARPE O, et al. Effects of maternal reproductive investment on sex-specific pollutant accumulation in seabirds:a meta-analysis[J]. Environmental Science & Technology, 2019, 53(13):7821-7829 [16] YUAN Y, LI B, JIANG Y, et al. Did a meta-analysis accurately estimate the temporal trends of carbon stock change after grazing exclusion in China’s grasslands? A comment on “Effects of grazing exclusion on carbon sequestration in China’s grassland, ” by Deng et al. (2017)[J]. Earth-Science Reviews, 2019, 194:449-451 [17] CHEN J, LUO Y, XIA J, et al. Divergent responses of ecosystem respiration components to livestock exclusion on the Qinghai Tibetan Plateau[J]. Land Degradation and Development, 2018, 29(6):1726-1737 [18] WESSELS K J, PRINCE S D, CARROLL M, et al. Relevance of rangeland degradation in semiarid northeastern South Africa to the nonequilibrium theory[J]. Ecological Applications, 2007, 17(3):815-827 [19] TÄLLE M, DEÁK B, POSCHLOD P, et al. Grazing vs. mowing:A meta-analysis of biodiversity benefits for grassland management[J]. Agriculture, Ecosystems & Environment, 2016, 222:200-212 [20] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4):1150-1156 [21] ZHANG R Y, WANG Z W, HAN G D, et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China[J]. Agriculture, Ecosystems & Environment, 2018, 265:73-83 [22] 王明君, 韩国栋, 赵萌莉, 等. 草甸草原不同放牧强度对土壤有机碳含量的影响[J]. 草业科学, 2007, 24(10):6-10 [23] 李凤霞, 李晓东, 周秉荣, 等. 放牧强度对三江源典型高寒草甸生物量和土壤理化特征的影响[J]. 草业科学, 2015, 32(1):11-18 [24] 李红琴, 毛绍娟, 祝景彬, 等. 放牧强度对高寒草甸群落碳氮磷化学计量特征的影响[J]. 草业科学, 2017, 34(3):449-455 [25] 高永恒. 不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程研究[D]. 成都:中国科学院研究生院(成都生物研究所), 2007:19-25 [26] 刘新民, 陈海燕, 峥嵘, 等. 内蒙古典型草原羊粪和牛粪的分解特征[J]. 应用与环境生物学报, 2011, 17(6):791-796 [27] YANG Z A, XIONG W, XU Y, et al. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China[J]. Environmental Monitoring and Assessment, 2016, 188(12):678 [28] YAN L, ZHOU G S, ZHANG F. Effects of different grazing intensities on grassland production in china:a meta-analysis[J]. PLoS One, 2013, 8(12):e81466 [29] 王合云, 董智, 郭建英, 等. 不同放牧强度下短花针茅荒漠草原植被-土壤系统有机碳组分储量特征[J]. 生态学报, 2016, 36(15):4617-4625 [30] YANG C, ELLOUZE W, NAVARRO-BORRELL A, et al. Management of the arbuscular mycorrhizal symbiosis in sustainable crop production[M]. Mycorrhizal Fungi:use in sustainable agriculture and land restoration. Berlin, Heidelberg;Springer Berlin Heidelberg, 2014:89-118 [31] 许岳飞, 益西措姆, 付娟娟, 等. 青藏高原高山嵩草草甸植物多样性和土壤养分对放牧的响应机制[J]. 草地学报, 2012, 20(6):1026-1032 [32] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14):2099-2103 [33] 蔡晓布, 彭岳林, 于宝政. 西藏高寒草原土壤团聚体有机碳变化及其影响因素分析[J]. 农业工程学报, 2013, 29(11):92-99 [34] 张蒙, 李晓兵. 放牧对土壤有机碳的影响及相关过程研究进展[J]. 草地学报, 2018, 26(2):267-276 [35] LUO C Y, WANG S P, ZHANG L R, et al. CO2, CH4 and N2O fluxes in an alpine meadow on the Tibetan plateau as affected by N-addition and grazing exclusion[J]. Nutrient Cycling in Agroecosystems, 2020, 117(1):29-42 [36] ZHOU Z Y, LI F R, CHEN S K, et al. Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland[J]. Plant and Soil, 2011, 341(1-2):257-268 [37] 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1):99-105 [38] 范永刚, 胡玉昆, 李凯辉, 等. 巴音布鲁克主要草地类型表层土壤有机碳特征及其影响因素的研究[J]. 干旱区资源与环境, 2008, 22(8):179-184 [39] BURKE I C, YONKER C M, PARTON W J, et al. Texture, climate, and cultivation effects on soil organic matter content in U.S. Grassland Soils[J]. Soil Science Society of America Journal, 1989, 53(3):800-805 [40] DASTGHEYB SHIRAZI S S, AHMADI A, ABDI N, et al. Long-term grazing exclosure:implications on water erosion and soil physicochemical properties (case study:Bozdaghin rangelands, North Khorasan, Iran)[J]. Environmental Monitoring and Assessment, 2021, 193(1):51 [41] CAO J J, WANG L Y, ADAMOWSKI J F, et al. A context-dependent response of soil carbon and nitrogen to grazing exclusion:Evidence from a global meta-analysis[J]. Journal of Cleaner Production, 2024, 434:139792 [42] 陶贞, 次旦朗杰, 张胜华, 等. 草原土壤有机碳含量的控制因素[J]. 生态学报, 2013, 33(9):2684-2694 [43] QIU Y P, GUO L J, XU X Y, et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition[J]. Science Advances, 2021, 7(28):eabe9256 [44] CREAMER C A, DE MENEZES A B, KRULL E S, et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming[J]. Soil Biology and Biochemistry, 2015, 80:175-188 [45] 周恒, 田福平, 路远, 等. 草地土壤有机碳储量影响因素研究进展[J]. 中国农学通报, 2015, 31(23):153-157 [46] ROSBAKH S, BERNHARDT-RÖMERMANN M, POSCHLOD P. Elevation matters:contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps[J]. Alpine Botany, 2014, 124(2):143-154 [47] CONFORTI M, LONGOBUCCO T, SCARCIGLIA F, et al. Interplay between soil formation and geomorphic processes along a soil catena in a Mediterranean mountain landscape:an integrated pedological and geophysical approach[J]. Environmental Earth Sciences, 2020, 79(2):59 [48] HOU Y H, HE K Y, CHEN Y, et al. Changes of soil organic matter stability along altitudinal gradients in Tibetan alpine grassland[J]. Plant and Soil, 2021, 458(1-2):21-40 [49] 傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004, 24(3):469-476 [50] SIERRA C A, MALGHANI S, LOESCHER H W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil[J]. Biogeosciences, 2017, 14(3):703-710 [51] PETRAGLIA A, CACCIATORI C, CHELLI S, et al. Litter decomposition:effects of temperature driven by soil moisture and vegetation type[J]. Plant and Soil, 2019, 435(1-2):187-200 [52] ZHAO Y, WANG X, LI J, et al. Variation of δ13C and soil organic carbon under different precipitation gradients in alpine grassland on the Qinghai-Tibetan Plateau[J]. Journal of Soils and Sediments, 2022, 22(8):2219-2228 [53] BASIN'SKA A M, RECZUGA M K, GBKA M, et al. Experimental warming and precipitation reduction affect the biomass of microbial communities in a Sphagnum peatland[J]. Ecological Indicators, 2020, 112:106059 [54] WILSON C H, STRICKLAND M S, HUTCHINGS J A, et al. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland[J]. Global Change Biology, 2018, 24(7):2997-3009 [55] KLUMPP K, FONTAINE S, ATTARD E, et al. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community[J]. Journal of Ecology, 2009, 97(5):876-885 [56] SCHÖNBACH P, WAN H, GIERUS M, et al. Grassland responses to grazing:effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem[J]. Plant and Soil, 2011, 340(1):103-115 [57] 闫瑞瑞, 卫智军, 辛晓平, 等. 放牧制度对荒漠草原生态系统土壤养分状况的影响[J]. 生态学报, 2010, 30(1):43-51 [58] JIN Z C, ZHOU X H, HE J. Statistical methods for dealing with publication bias in meta-analysis[J]. Statistics in Medicine, 2015, 34(2):343-360 |