草地学报 ›› 2025, Vol. 33 ›› Issue (11): 3495-3504.DOI: 10.11733/j.issn.1007-0435.2025.11.002
• 专论与进展 • 上一篇
孙铭1, 王丽1, 孙新朝2, 岳果1, 何怡玲1, 王婷1, 鄢家俊1, 苟文龙1, 钟曦彤1, 邹佳邑1, 罗湘1, 白史且1
收稿日期:2025-03-10
修回日期:2025-06-27
发布日期:2025-11-13
通讯作者:
白史且,E-mail:baishiqie@swust.edu.cn
作者简介:孙铭(1992-),男,汉族,甘肃武威人,博士,特聘副教授,主要从事草类植物育种与种子科学研究,E-mail:sunming4709@163.com
基金资助:SUN Ming1, WANG Li1, SUN Xin-chao2, YUE Guo1, HE Yi-ling1, WANG Ting1, YAN Jia-jun1, GOU Wen-long1, ZHONG Xi-tong1, ZOU Jia-yi1, LUO Xiang1, BAI Shi-qie1
Received:2025-03-10
Revised:2025-06-27
Published:2025-11-13
摘要: 高质量种子是高水平农业的重要体现。在全国种业蓬勃发展的背景下,种子活力研究近年来逐渐成为行业研究的热点与重点。探索种子活力调控机制对未来种质创新、良种繁育、种质资源保存、种子加工贮藏及质量控制等具有重要价值。谷胱甘肽(Glutathione,GSH)是植物体内不可替代的氧化还原缓冲剂,其相关代谢和调控因子在种子活力维持中的关键作用近年来逐渐被报道。本文系统综述了GSH在种子发育、老化及萌发过程中的动态代谢规律,重点阐述了GSH通过调节活性氧平衡、介导蛋白质氧化还原修饰、维持线粒体结构与功能、促进活性羰基物质解毒以及参与细胞信号转导等多种途径调控种子活力的分子机制。在此基础上,本研究整合了外源GSH处理对种子活力的影响证据,构建了GSH参与种子活力调控的主要途径模型,并针对当前研究存在的关键问题,提出了GSH在种子活力研究领域的未来发展方向和创新性研究思路。
中图分类号:
孙铭, 王丽, 孙新朝, 岳果, 何怡玲, 王婷, 鄢家俊, 苟文龙, 钟曦彤, 邹佳邑, 罗湘, 白史且. 谷胱甘肽(GSH)参与植物种子活力调控的研究进展[J]. 草地学报, 2025, 33(11): 3495-3504.
SUN Ming, WANG Li, SUN Xin-chao, YUE Guo, HE Yi-ling, WANG Ting, YAN Jia-jun, GOU Wen-long, ZHONG Xi-tong, ZOU Jia-yi, LUO Xiang, BAI Shi-qie. Research Progress on the Role of Glutathione in Regulating Plant Seed Vigor[J]. Acta Agrestia Sinica, 2025, 33(11): 3495-3504.
| [1] ZHAO J,HE Y Q,WANG Z F. Current advances on the molecular mechanism of seed vigor[J]. Journal of South China Agricultural University,2023,44(5):659-669 赵佳,何永奇,王州飞. 种子活力分子调控机理研究进展[J]. 华南农业大学学报,2023,44(5):659-669 [2] SUN Q,WANG J H,SUN B Q. Advances on seed vigor physiological and genetic mechanisms[J]. Scientia Agricultura Sinica,2007,40(1):48-53 孙群,王建华,孙宝启. 种子活力的生理和遗传机理研究进展[J]. 中国农业科学,2007,40(1):48-53 [3] NIE Y T,ZHANG Z,CUI K L,et al. Advances in biological regulation research and improvement technologies on seed vigor in forage species[J]. Acta Agrestia Sinica,2023,31(8):2263-2274 聂宇婷,张昭,崔凯伦,等. 草种子活力的生物学调控与提高技术研究进展[J]. 草地学报,2023,31(8):2263-2274 [4] MI C J,HONG L,MA W,et al. Effects of glutathione priming on germination and seedling growth characteristics of aged oat seeds[J]. Acta Agrestia Sinica,2024,32(3): 928-934 米春娇,洪流,马馼,等. 谷胱甘肽引发对老化燕麦种子发芽与幼苗生长特性的影响[J]. 草地学报,2024,32(3):928-934 [5] SUN M,WANG S Q,AIERKEN D,et al. Effects of antioxidant priming on germination and seedling growth of aged seeds of smooth bromegrass[J]. Acta Prataculturae Sinica,2019,28(11):105-113 孙铭,王思琪,艾尔肯·达吾提,等. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响[J]. 草业学报,2019,28(11):105-113 [6] SHOEVA O Y U,GORDEEVA E I,ARBUZOVA V S,et al. Anthocyanins participate in protection of wheat seedlings from osmotic stress[J]. Cereal Research Communications,2017,45(1):47-56 [7] SUN M,SUN S J,MAO C L,et al. Dynamic responses of antioxidant and glyoxalase systems to seed aging based on full-length transcriptome in oat (Avena sativa L.)[J]. Antioxidants,2022,11(2):395 [8] RATAJCZAK E,MAŁECKA A,CIERESZKO I,et al. Mitochondria are important determinants of the aging of seeds[J]. International Journal of Molecular Sciences,2019,20(7):1568 [9] SUN S J,MI C J,MA W,et al. Dynamic responses of germination characteristics and antioxidant systems to alfalfa (Medicago sativa) seed aging based on transcriptome[J]. Plant Physiology and Biochemistry,2024,217:109205 [10] RENARD J,NIÑOLES R,MARTÍNEZ-ALMONACID I,et al. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics[J]. Plant,Cell & Environment,2020,43(10):2523-2539 [11] GILL S S,ANJUM N A,HASANUZZAMAN M,et al. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations[J]. Plant Physiology and Biochemistry,2013,70:204-212 [12] HASANUZZAMAN M,NAHAR K,ANEE T I,et al. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance[J]. Physiology and Molecular Biology of Plants,2017,23(2):249-268 [13] NOCTOR G,FOYER C H. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279 [14] PASTERNAK M,LIM B,WIRTZ M,et al. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development[J]. Plant Journal,2008,53(6):999-1012 [15] UGALDE J M,FUCHS P,NIETZEL T,et al. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments[J]. Plant Physiology,2021,186(1):125-141 [16] ROACH T,NAGEL M,BÖRNER A,et al. Changes in tocochromanols and glutathione reveal differences in the mechanisms of seed ageing under seedbank conditions and controlled deterioration in barley[J]. Environmental and Experimental Botany,2018,156:8-15 [17] LIM B,MEYER A J,COBBETT C S. Development of glutathione-deficient embryos in Arabidopsis is influenced by the maternal level of glutathione[J]. Plant Biology,2011,13(4):693-697 [18] LI Y,WANG Y,HE Y Q,et al. Glutathionylation of a glycolytic enzyme promotes cell death and vigor loss during aging of elm seeds[J]. Plant Physiology,2024,195(4):2596-2616 [19] CAIRNS N G,PASTERNAK M,WACHTER A,et al. Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo[J]. Plant Physiology,2006,141(2):446-455 [20] NIETZEL T,MOSTERTZ J,RUBERTI C,et al. Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(1):741-751 [21] KRANNER I,BIRTIĆ S,ANDERSON K M,et al. Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death?[J]. Free Radical Biology and Medicine,2006,40(12):2155-2165 [22] SUMUGAT M R. Glutathione dynamics in arabidopsis seed development and germination[D]. Virginia: Virginia Polytechnic Institute and State University,2004:27-38 [23] BAILLY C,EL-MAAROUF-BOUTEAU H,CORBINEAU F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology[J]. Comptes Rendus Biologies,2008,331(10):806-814 [24] LIU J,GUI J,GAO W,et al. Review of the physiological and biochemical reactions and molecular mechanisms of seed aging[J]. Acta Ecologica Sinica,2016,36(16):4997-5006 刘娟,归静,高伟,等. 种子老化的生理生化与分子机理研究进展[J]. 生态学报,2016,36(16):4997-5006 [25] YAN H F,XIA F S,MAO P S. Research progress of seed aging and vigor repair[J]. Chinese Agricultural Science Bulletin,2014,30(3):20-26 闫慧芳,夏方山,毛培胜. 种子老化及活力修复研究进展[J]. 中国农学通报,2014,30(3):20-26 [26] ZHANG K L,ZHANG Y,SUN J,et al. Deterioration of orthodox seeds during ageing: influencing factors,physiological alterations and the role of reactive oxygen species[J]. Plant Physiology and Biochemistry,2021,158:475-485 [27] NAGEL M,KRANNER I,NEUMANN K,et al. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley[J]. Plant,Cell & Environment,2015,38(6):1011-1022 [28] NIÑOLES R,PLANES D,ARJONA P,et al. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity[J]. Plant,Cell & Environment,2022,45(9):2708-2728 [29] SEAL C E,ZAMMIT R,SCOTT P,et al. Glutathione half-cell reduction potential as a seed viability marker of the potential oilseed crop Vernonia galamensis[J]. Industrial Crops and Products,2010,32(3):687-691 [30] SUN M. Physiological and molecular mechanisms underlying the regulation of oat seed vigor by the antioxidant and glyoxalase systems[D]. Beijing:China agricultural university,2023:39-57 孙铭. 抗氧化系统和乙二醛酶系统调控燕麦种子活力的生理和分子机制研究[D]. 北京:中国农业大学,2023:39-57 [31] ZHU Y Q. A research on physiological and metabolism of mitochondrial biogenesis during oat and barley seed imbibition[D]. Beijing:China agricultural university,2020:18-55 朱艳乔. 燕麦和大麦种子吸胀过程线粒体生物发生的生理和代谢规律研究[D]. 北京:中国农业大学,2020:18-55 [32] TOMMASI F,PACIOLLA C,DE PINTO M C,et al. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds[J]. Journal of Experimental Botany,2001,52(361):1647-1654 [33] GERNA D,ROACH T,STÖGGL W,et al. Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth[J]. Free Radical Research,2017,51(6):568-581 [34] CIACKA K,KRASUSKA U,OTULAK-KOZIEŁ K,et al. Dormancy removal by cold stratification increases glutathione and S-nitrosoglutathione content in apple seeds[J]. Plant Physiology and Biochemistry,2019,138:112-120 [35] MA Z G,BYKOVA N V,IGAMBERDIEV A U. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds[J]. The Crop Journal,2017,5(6):459-477 [36] LIU C,SHEN L P,XIAO Y,et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination[J]. Science,2021,372(6538):171-175 [37] BAILLY C. Active oxygen species and antioxidants in seed biology[J]. Seed Science Research,2004,14(2):93-107 [38] ORACZ K,EL-MAAROUF BOUTEAU H,FARRANT J M,et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation[J]. Plant Journal,2007,50(3):452-465 [39] BAILLY C. The signalling role of ROS in the regulation of seed germination and dormancy[J]. Biochemical Journal,2019,476(20):3019-3032 [40] PENG L,LANG S R,WANG Y,et al. Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom[J]. Journal of Experimental Botany,2017,68(13):3585-3601 [41] JOB C,RAJJOU L,LOVIGNY Y,et al. Patterns of protein oxidation in Arabidopsis seeds and during germination[J]. Plant Physiology,2005,138(2):790-802 [42] BARBA-ESPIN G,NICOLAS E,ALMANSA M S,et al. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism[J]. Plant Physiology and Biochemistry,2012,59:30-36 [43] RATTANAWONG K,KOISO N,TODA E,et al. Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote[J]. Plant Journal,2021,108(4):1097-1115 [44] LIU J,HASANUZZAMAN M,WEN H L,et al. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice[J]. Protoplasma,2019,256(5):1217-1227 [45] SUN M,SUN S J,JIA Z C,et al. Genome-wide analysis and expression profiling of glutathione reductase gene family in oat (Avena sativa) indicate their responses to abiotic stress during seed imbibition[J]. International Journal of Molecular Sciences,2022,23(19):11650 [46] ZHANG Z,SU H Y,LI Q G,et al. Transcriptome profiling reveals the response of seed germination of Peganum harmala to drought stress[J]. Plants,2024,13(12):1649 [47] LIU S J,LIU W H,LAI J Y,et al. OsGLYI3,a glyoxalase gene expressed in rice seed,contributes to seed longevity and salt stress tolerance[J]. Plant Physiology and Biochemistry,2022,183:85-95 [48] ZHAO F Y,WANG X Y,ZHAO Y X,et al. Transferring the Suaeda salsa glutathione S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings[J]. Journal of Plant Physiology and Molecular Biology,2006,32(2):231-238 赵凤云,王晓云,赵彦修,等. 转入盐地碱蓬谷胱甘肽转移酶和过氧化氢酶基因增强水稻幼苗对低温胁迫的抗性[J]. 植物生理与分子生物学学报,2006,32(2):231-238 [49] QUAN G. Cloning and functional identification of glutathione synthesis and reductase related genes in Spartina alterniflora[D]. Yantai: Yantai university,2015:55-87 权庚. 互花米草谷胱甘肽合成及还原酶相关基因的克隆和功能鉴定[D]. 烟台: 烟台大学,2015:55-87 [50] SAEED F,KAUSAR A,ALI Q,et al. Impact of combined glutathione and Zn application for seed priming in ameliorating the adverse effects of water stress on maize seed germination attributes,metabolite levels,and seedling vigor[J]. Gesunde Pflanzen,2023,75(5):2147-2168 [51] RAMZAN D M,PARVEEN M,SHAH A ALI,et al. Glutathione-based seed priming modulates early growth and improves pysio-biocemical and micronutrient content of Pisum sativum against copper toxicity[J/OL].http://dx.doi.org/10.2139/ssrn.4257535,2022-01-02/2025-03-09 [52] MASUDA D,NAKANISHI I,OHKUBO K,et al. Mitochondria play essential roles in intracellular protection against oxidative stress-which molecules among the ROS generated in the mitochondria can escape the mitochondria and contribute to signal activation in cytosol?[J]. Biomolecules,2024,14(1):128 [53] WANG W Q,XU D Y,SUI Y P,et al. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(9):e2026355119 [54] ZHANG Y L,ZHANG M,LI F,et al. Programmed cell death of Ulmus pumila L. seeds during aging[J]. Frontiers of Forestry in China,2008,3(3):357-363 [55] MAŁECKA A,CISZEWSKA L,STASZAK A,et al. Relationship between mitochondrial changes and seed aging as a limitation of viability for the storage of beech seed (Fagus sylvatica L.)[J]. PeerJ,2021,9:e10569 [56] RAO P J M,PALLAVI M,BHARATHI Y,et al. Insights into mechanisms of seed longevity in soybean: a review[J]. Frontiers in Plant Science,2023,14:1206318 [57] TIAN Q,WANG D,ZHANG W L,et al. Effect of artificial aging on soybean seed vigor and ascorbate-glutathione cycle in mitochondria[J]. Plant Physiology Journal,2016,52(4):543-550 田茜,王栋,张文兰,等. 老化处理对大豆种子活力及线粒体抗坏血酸-谷胱甘肽循环的影响[J]. 植物生理学报,2016,52(4):543-550 [58] NIGAM M,MISHRA A P,SALEHI B,et al. Accelerated ageing induces physiological and biochemical changes in tomato seeds involving MAPK pathways[J]. Scientia Horticulturae,2019,248:20-28 [59] ARC E,GALLAND M,CUEFF G,et al. Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment[J]. Proteomics,2011,11(9):1606-1618 [60] LENNICKE C,COCHEMÉ H M. Redox metabolism: ros as specific molecular regulators of cell signaling and function[J]. Molecular Cell,2021,81(18):3691-3707 [61] CHEN T H,WANG H C,CHANG C J,et al. Mitochondrial glutathione in cellular redox homeostasis and disease manifestation[J]. International Journal of Molecular Sciences,2024,25(2):1314 [62] LIU Y Y,LIU S S,TOMAR A,et al. Autoregulatory control of mitochondrial glutathione homeostasis[J]. Science,2023,382(6672):820-828 [63] XIN X,TIAN Q,YIN G K,et al. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed[J]. Journal of Plant Physiology,2014,171(2):140-147 [64] XIA F S,CHENG H,CHEN L L,et al. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds[J]. BMC Plant Biology,2020,20(1):104 [65] SINGLA-PAREEK S L,KAUR C,KUMAR B,et al. Reassessing plant glyoxalases: large family and expanding functions[J]. New Phytologist,2020,227(3):714-721 [66] YE X Y,QIU X M,WANG Y,et al. Glyoxalase system and its role in response and adaptation of plants to environmental stress[J]. Plant Physiology Journal,2019,55(4):401-410 叶芯妤,邱雪梅,王月,等. 乙二醛酶系统及其在植物响应和适应环境胁迫中的作用[J]. 植物生理学报,2019,55(4):401-410 [67] SCHMITZ J,DITTMAR I C,BROCKMANN J D,et al. Defense against reactive carbonyl species involves at least three subcellular compartments where individual components of the system respond to cellular sugar status[J]. The Plant Cell,2017,29(12):3234-3254 [68] RAMU V S,PREETHI V,NISARGA K N,et al. Carbonyl cytotoxicity affects plant cellular processes and detoxifying enzymes scavenge these compounds to improve stress tolerance[J]. Journal of Agricultural and Food Chemistry,2020,68(23):6237-6247 [69] LIU Y G,YE N H,LIU R,et al. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination[J]. Journal of Experimental Botany,2010,61(11):2979-2990 [70] KORAMUTLA M K,NEGI M,AYELE B T. Roles of glutathione in mediating abscisic acid signaling and its regulation of seed dormancy and drought tolerance[J]. Genes,2021,12(10):1620 [71] PAIVA A L S,PASSAIA G,JARDIM-MESSEDER D,et al. The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants[J]. Journal of Proteomics,2021,232:104029 [72] WU J,ZHANG N,LIU Z G,et al. The AtGSTU7 gene influences glutathione-dependent seed germination under ABA and osmotic stress in Arabidopsis[J]. Biochemical and Biophysical Research Communications,2020,528(3):538-544 [73] RUAN M B,YANG Y L,LI K M,et al. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signalling[J]. BMC Plant Biology,2018,18(1):329 [74] WANG P C,ZHU J K,LANG Z B. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins[J]. Plant Signaling & Behavior,2015,10(6):e1031939 [75] MATAKIADIS T,ALBORESI A,JIKUMARU Y,et al. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy[J]. Plant Physiology,2009,149(2):949-960 [76] YU W,XIE J M,TENG H W. Alleviation effects of exogenous glutathione on autotoxicity stress during stock and scion seeds germination of grafted cucumber[J]. Journal of Nuclear Agricultural Sciences,2016,30(8):1633-1638 于威,颉建明,滕汉玮. 外源谷胱甘肽对嫁接黄瓜砧穗种子萌发过程中自毒胁迫的缓解效应[J]. 核农学报,2016,30(8):1633-1638 |
| [1] | 吕艳贞, 聂宇婷, 张昭, 崔凯伦, 闫慧芳. 紫花苜蓿种子耐贮藏性综合评价及关键指标筛选[J]. 草地学报, 2024, 32(4): 1131-1141. |
| [2] | 米春娇, 洪流, 马馼, 毛培胜. 谷胱甘肽引发对老化燕麦种子发芽与幼苗生长特性的影响[J]. 草地学报, 2024, 32(3): 928-934. |
| [3] | 吴凡, 赵宇民, 张艺凝, 许志宇, 高鹏, 赵祥, 朱慧森, 梁银萍. 外源谷胱甘肽对白粉菌胁迫下草地早熟禾抗氧化系统的影响[J]. 草地学报, 2024, 32(10): 3080-3090. |
| [4] | 聂宇婷, 张昭, 崔凯伦, 吕艳贞, 孙娟, 闫慧芳. 草种子活力的生物学调控与提高技术研究进展[J]. 草地学报, 2023, 31(8): 2263-2274. |
| [5] | 叶文兴, 孔令琪. 基于氧传感技术测定燕麦种子活力的初步研究[J]. 草地学报, 2023, 31(6): 1714-1719. |
| [6] | 李红玉, 王雅聪, 夏方山, 王勃, 李尹琳, 张杰敏. 燕麦种胚细胞和线粒体AsA-GSH循环对外源H2O2引发的响应[J]. 草地学报, 2023, 31(4): 1064-1070. |
| [7] | 李红玉, 王雅聪, 夏方山, 李尹琳, 王聪聪, 王勃, 董宽虎. 外源H2O2引发对燕麦种胚线粒体AsA-GSH循环的影响[J]. 草地学报, 2022, 30(9): 2298-2305. |
| [8] | 黄颖, 刘欢, 赵桂琴, 王绮玉, 罗建民, 姚瑞瑞. 自然老化和人工老化对燕麦种子萌发特性及遗传完整性的影响[J]. 草地学报, 2022, 30(8): 2066-2074. |
| [9] | 李红玉, 王雅聪, 曾佳, 王聪聪, 董宽虎, 夏方山. 外源H2O2引发对燕麦种胚细胞AsA-GSH循环的影响[J]. 草地学报, 2022, 30(7): 1668-1674. |
| [10] | 孙守江, 马馼, 祁娟, 师尚礼, 刘文辉. 老芒麦种子染色体端粒及抗氧化防御系统对自然老化的响应[J]. 草地学报, 2022, 30(10): 2549-2557. |
| [11] | 刘备, 宋玉梅, 孙铭, 毛培胜. 燕麦劣变种子吸胀过程中线粒体AsA-GSH循环的生理响应[J]. 草地学报, 2021, 29(2): 211-219. |
| [12] | 赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草幼苗抗氧化系统的调控[J]. 草地学报, 2020, 28(6): 1527-1534. |
| [13] | 符京燕, 梁林林, 周敏, 李州. 伽马氨基丁酸浸种对铝胁迫下白三叶种子萌发及耐铝性的影响[J]. 草地学报, 2020, 28(5): 1275-1284. |
| [14] | 唐凤, 张树振, 罗金, 李瑶, 宋家兴, 灭如叶提·乌艾, 张博. 不同功能叶对老芒麦种子产量构成因子及种子质量的影响[J]. 草地学报, 2020, 28(3): 661-666. |
| [15] | 王娟, 张亚妮, 熊乙, 原黎明, 周亚楠, 赵祥, 佟莉蓉. 不同种衣剂配方对达乌里胡枝子种子萌发的影响[J]. 草地学报, 2020, 28(1): 237-244. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||