[1] 周兴民,赵新全,曹广民,等. 中国嵩草草甸[M]. 北京:北京科学出版社,2001:62-68
[2] 李以康,林丽,张法伟,等. 小嵩草群落-高寒草甸地带性植被放牧压力下的偏途顶极群落[J]. 山地学报,2010,28(3):257-265
[3] 苗彦军,徐雅梅,呼天明,等. 高山嵩草种质资源评价研究[J].草业与畜牧,2008,8(11):10-13
[4] 王启基,李世雄,王文颖,等. 江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应[J]. 生态学报,2008,28(3):885-894
[5] 孙步功,龙瑞军,王长庭. 青藏高原冷龙岭南麓高寒小嵩草草甸植物种群物候学研究[J]. 草业科学,2007,24(8):16-20
[6] 王文颖,王启基,邓自发. 青海海北地区高山嵩草草甸植物群落的结构特征及其分布格局[J]. 植物生态学报,1998,22(4):336-343
[7] 王长庭,龙瑞军,丁路明. 青藏高原高寒嵩草草甸基本特征的研究[J]. 草业科学,2004,21(8):16-19
[8] 李希来,杨元武,张静,等. 不同退化程度"黑土滩"高山嵩草克隆生长特性[J]. 草业学报,2003,12(3):51-56
[9] 高新中,李希来,马桂花,等. 不同退化高寒草甸矮嵩草和高山嵩草无性系繁殖规律[J]. 草业与畜牧,2008,1:7-11
[10] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999,16:444-448
[11] Tikkanen M, Mekala N R, Aro E M. Photosystem Ⅱ photoinhibition-repair cycle protects Photosystem I from irreversible damage[J]. Biochimica et Biophysica Acta,2013,1837:210-215
[12] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3,C4,and CAM plants:temperature acclimation and temperature adaptation[J]. Photosynthesis Research,2014,119:101-117
[13] Lima Neto M C, Lobo A K M, Martins M O, et al. Dissipation of excess photosynthetic energy contributes to salinity tolerance:A comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas[J]. Journal of Plant Physiology,2014,171:23-30
[14] Baker N R. Chlorophyll fluorescence:A probe of photosynthesis in vivo[J]. Annual Review of Plant Biology,2008,59:89-113
[15] Baker N R,Rosenqvist E. Application of chlorophyll fluorescence and improve crop production strategies:an examination of future possibilities[J]. Journal of Experimental Botany,2004,55:1607-1621
[16] Oxborough K, Baker N R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components:Calculation of qP and Fv'/Fm' without measuring Fo'[J]. Photosynthesis Research,1997,54:135-142
[17] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta,1989,990:87-92
[18] Bilger W, Björkman O. Role of the xanthophyll cycle photoprotection elucidated by measurements of light-induced absorbance changes,fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research,1990,25:173-185
[19] 许大全. 光合作用效率[M]. 上海:上海科学技术出版社,2002:163-170
[20] Shi S B, Shi R, Li M. Changes in photosynthesis of alpine plant Saussurea superba during leaf expansion[J]. Acta Physiol Plant,2015,37:235. DOI 10.1007/s11738-015-1987-4
[21] 朱广廉,钟诲文,张爱琴. 植物生理学实验[M]. 北京:北京大学出版社,1990:51-54
[22] 师生波,尚艳霞,朱鹏锦,等. 增补UV-B辐射对高山植物美丽风毛菊叶片PSⅡ光化学效率的影响[J]. 草地学报,2011,19(4):539-545
[23] Demmig-Adams B,Cohu CM,Muller O,et al. Modulation of photosynthetic energy conversion efficiency in nature:from seconds to seasons[J]. Photosynthesis Research,2012,113:75-88
[24] Osório M L, Osório J, Romano A. Photosynthesis,energy partitioning,and metabolic adjustments of the endangered Cistaceae species Tuberaria major under high temperature and drought[J]. Photosynthetica,2013,51:75-84
[25] Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research,2004,79:209-218
[26] Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany,2000,51:659-668
[27] Murchie E H, Niyogi K K. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiology,2011,155:86-92
[28] Niyogi K K, Truong T B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis[J]. Current Opinion in Plant Biology,2013,16:307-314
[29] 刘玉萍,周勇辉,吕婷,等. 青藏高原3种野生豌豆光合生理特性比较[J]. 草地学报,2017,25(1):122-129
[30] Murali N S, Teramura A H. Effectiveness of the solar UV-B radiation on the growth and physiology of field-grown soybean modified by water stress[J]. Photochemistry and Photobiology,1986,44:215-219
[31] Sullivan J H, Teramura A H. Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean[J]. Plant Physiology,1990,92:141-146
[32] 郑洁,郭延平,胡美君. 光温交互作用对柑橘植株叶绿素荧光和D1蛋白的影响[J]. 浙江大学学报(农业与生命科学版),2008,34(6):629-634
[33] 李金鹏,罗丹娜,马彦,等. 光照和氮交互作用对3种彩叶玉簪光合作用及荧光特性的影响[J]. 东北林业大学学报,2012,40(7):56-59,63
[34] 张翠萍,孟平,李建中,等. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报,2014,38(12):1345-1355
[35] 姜罡丞,贾晓红. 不同海拔高度上的嵩草属三个种营养器官显微结构的比较[J]. 河南大学学报(自然科学版),1999,29:63-68
[36] Ingrisch J, Biermann T, Seeber E, et al. Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling[J]. Science of the Total Environment,2015,505:1213-1224
[37] Dorji T, Totland R, Moe S, et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet[J]. Global Change Biology,2013,19:459-472 |