[1] 曾晓希. 抗重金属微生物的筛选及其抗镉机理和镉吸附特性研究[D]. 长沙:中南大学,2010:1-3 [2] 张金彪,黄维南. 镉对植物的生理生态效应的研究进展[J]. 生态学报,2000.20(3):514-523 [3] 彭星辉,谢晓阳. 稻田镉(Cd)污染的土壤修复技术研究进展[J]. 湖南农业科学,2007,2007(2):67-69 [4] Morar F,Iantovics L B,Gligor A. Analysis of phytoremediation potential of crop plants in industrial heavy metal contaminated soil in the upper Mures River Basin[J]. Journal of Environmental Informatics,2018,31(1):1-1 [5] Ike A,Sriprang R,Ono H,et al. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J]. Chemosphere,2007,66(9):1670-1676 [6] 安婧,宫晓双,魏树和. 重金属污染土壤超积累植物修复关键技术的发展[J]. 生态学杂志,2015,34(11):3261-3270 [7] 滕应,骆永明,李振高. 污染土壤的微生物修复原理与技术进展[J]. 土壤,2007(4):497-502 [8] Wang S,Zhao X. On the potential of biological treatment for arsenic contaminated soils and groundwater[J]. Journal of environmental Management,2009,90(8):2367-2376 [9] Veglio F,Beolchini F. Removal of metals by biosorption:a review[J]. Hydrometallurgy,1997,44:301-316 [10] Vijver M G,Van Gestel C A,Lanno R P,et al. Internal metal sequestration and its ecotoxicological relevance:a review[J]. Environ Sci Technol,2004,38:4705-4712 [11] Lo W,Chua H,Lam K H,et al. A comparative investigation on the biosorption of lead by filamentous fungal biomass[J]. Chemosphere,1999,39:2723-2736 [12] Shi Y,Xie H,Cao L,et al. Effects of Cd-and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils[J]. Environmental Science and Pollution Research,2017,24(1):417-426 [13] 钱春香,王明明,许燕波. 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报(自然科学版),2013,43(03):669-674 [14] 徐少慧,蒋代华,史鼎鼎,等. 重金属复合污染土壤中耐铅镉微生物的筛选及鉴定[J]. 应用与环境生物学报,2019,25(3):532-538 [15] 孙吉雄. 草坪学第四版[M]. 北京:中国农业出版社,2015:181 [16] 王亚军,梁兴印,屈小梭,等. 株洲清水塘土壤中重金属含量分布特征[J]. 有色金属工程,2015,5(2):89-92 [17] Sheng X F,Xia J J,Jiang C Y,et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental pollution,2008,156(3):1164-1170 [18] McEldowney S. The impact of surface attachment on cadmium accumulation by Pseudomonas fluorescens H2[J]. FEMS microbiology ecology,2000,33(2):121-128 [19] Xie Y,Li X,Huang X,et al. Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice[J]. Ecotoxicology and environmental safety,2019,171:373-381 [20] Xie Y,Hu L X,Du Z M,et al. Effects of cadmium exposure on growth and metabolic profile of bermudagrass (Cynodon dactylon (L.) Pers.)[J]. PLOS One,2014,9(12):6-8 [21] 张衡宇. 植病生防菌哈茨木霉(Trichoderma harzianum)的研究[D]. 福建:福建农林大学,2011:20-22 [22] 朱双杰. 哈兹木霉对植物的促生作用及其机制研究[D]. 合肥:安徽农业大学,2007:13-15 [23] Arshad M,Frankenberger W T. The rhizosphere and plant growth[M]. Dordrecht:Springer,1991:327-334 [24] 靳治国. 耐铅镉菌株的筛选及其在污染土壤修复中的应用[D]. 重庆:西南大学,2010:31-34 [25] 邓亚男,彭迪,王立峰,等. 耐镉棘孢木霉的筛选鉴定及其镉吸附特性研究[J]. 湖南农业科学,2018(12):1-7 [26] 马佳林,聂小琴,董发勤,等. 三种微生物对铀的吸附行为研究[J]. 中国环境科学,2015,35(3):825-832 [27] 李艳娟,刘博,庄正,等. 哈茨木霉与绿色木霉对杉木种子萌发和幼苗生长的影响[J]. 应用生态学报,2017,28(9):2961-2966 [28] 李松鹏,崔琳琳,程家森,等. 两株哈茨木霉菌株防治水稻纹枯病及促进水稻生长的潜力研究[J]. 植物病理学报,2018,48(1):98-107 [29] 谢琳淼,常春丽,姚志红,等. 哈茨木霉对紫羊茅和草地早熟禾的促生及抗性诱导作用[J]. 草业科学,2018,35(9):2079-2086 [30] 夏增禄. 中国土壤环境容量[M]. 北京:地震出版社,1992:13-76 [31] Wu F B,Dong J,Qian Q Q,et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere,2005,60(10):1437-1446 [32] 吴洁婷,杨东广,王立,等. 植物-菌根真菌联合修复重金属污染土壤[J]. 微生物学通报,2018,45(11):2503-2516 [33] Lins,Cláudia Elizabete Lima,et al. Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a copper contaminated soil[J]. Applied Soil Ecology,2006,31(3):181-185 |