[1] IPCC. Climate change:impact adaptation,and vulnerability[M]. Cambridge:Cambridge University Press,2014:189 [2] 秦大河,Thomas S. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究展,2014,10(01):1-6 [3] Pepin N,Bradley R S,Diaz H F,et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change,2015,5(05):424-430 [4] Penuelas J,Sardans J,Estiarte M,et al. Evidence of current impact of climate change on life:A walk from genes to the biosphere[J]. Global Change Biology,2013,19(08):2303-2338 [5] Wen J,Qin R M,Zhang S X,et al. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land,2020(12):252-266 [6] 肖瑶,王根绪,杨燕,等. 模拟增温对青藏高原多年冻土区小嵩草和藏嵩草生长与抗氧化特征的影响[J]. 应用生态学报,2017,28(04):1161-1167 [7] 李岩,干珠扎布,胡国铮,等. 增温对青藏高原高寒草原生态系统碳交换的影响[J]. 生态学报,2019,39(06):2004-2012 [8] Wang Q,Zhang Z H,Du R,et al. Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change[J]. Journal of Ecology,2019:107(04):1944-1955 [9] 徐满厚,刘敏,薛娴,等. 增温、刈割对高寒草甸植被物种多样性和地下生物量的影响[J]. 生态学杂志,2015,34(09):2432-2439 [10] 姜风岩,位晓婷,康濒月,等. 模拟增温对高寒草甸植物物种多样性与初级生产力的影响[J]. 草地学报,2019,27(02):298-305 [11] Xu M H,Liu M,Xue X,et al. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow,China[J]. Journal of Arid Land,2016,8(05):773-786 [12] 姜炎彬,范苗,张扬建. 短期增温对藏北高寒草甸植物群落特征的影响[J]. 生态学杂志,2017,36(03):616-622 [13] 赵艳艳,周华坤,姚步青,等. 长期增温对高寒草甸植物群落和土壤养分的影响[J]. 草地学报,2015,23(04):665-671 [14] 王多斌. 高寒草甸植物群落和土壤有机碳对气候变化和放牧的响应[D]兰州:兰州大学,2019:50-51 [15] 周华坤,周兴民,赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究[J]. 植物生态学报,2000,24(05):547-553 [16] Lin D L,Xia J Y,Wan S Q,et al. Climate warming and biomass accumulation of terrestrial plants:a meta-analysis[J]. New Phytologist,2010,188(01):187-198 [17] 李英年,赵亮,赵新全,等. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化[J]. 草地学报,2004,12(03):236-239 [18] Piao S L,Wang X H,Ciais P,et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology,2011,17(10):3228-3239 [19] 马丽,徐满厚,翟大彤,等. 高寒草甸植被-土壤系统对气候变暖响应的研究进展[J]. 生态学杂志,2017,36(06):1708-1717 [20] 张相锋,彭阿辉,宋凤仙,等. 基于OTCs模拟增温方式探讨气候变暖对青藏高原草地生态系统的影响[J]. 广西植物,2018,38(12):1675-1684 [21] Li W H. An Overview of Ecological Research Conducted on the Qinghai-Tibetan Plateau[J]. Journal of Resources and Ecology,2017,8(01):1-4 [22] 王安阔,王娓,曾辉,等. 青藏高原高寒草甸不同海拔梯度上增温和优势植物物种去除对生态系统碳通量的影响[J]. 北京大学学报(自然科学版),2019,55(02):299-309 [23] Yao T D,Thompson L G,Mosbrugger V,et al. Third pole environment (TPE)[J]. Environmental Development,2012(03):52-64 [24] 孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(01):3-12 [25] 权国玲,尚占环.中国草地生态系统模拟增温实验的综合比较[J]. 生态学杂志,2015,34(04):1166-1173 [26] 戴黎聪,柯浔,曹莹芳,等. 青藏高原矮嵩草草甸地下和地上生物量分配格局及其与气象因子关系[J]. 生态学报,2019,39(02):486-493 [27] Shi G X,Yao B Q,Liu Y J,et al. The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai-Tibet Plateau[J]. Applied Soil Ecology,2017(121):31-40 [28] 杨晓艳,张世雄,温静,等. 吕梁山森林群落草本层植物物种多样性的空间格局及其对模拟增温的响应[J]. 生态学报,2018,38(18):6642-6654 [29] 杨晓霞,任飞,周华坤,等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报,2014,38(02):159-166 [30] 卢慧,丛静,刘晓,等. 三江源区高寒草甸植物多样性的海拔分布格局[J]. 草业学报,2015,24(07):197-204 [31] Shi Z,Sherry R,Xu X,et al. Evidence for long-term shift in plant community composition under decadal experimental climate warming[J].Journal of Ecology,2015,103(05):1131-1140 [32] Yang Z L,Zhang Q,Su F L,et al.Daytime warming lowers community temporal stability by reducing the abundance of dominant,stable species[J]. Global Change Biology,2017,23(01):154-163 [33] Zhang Y Q,WelkeR J M. Tibetan alpine tundra responses to simulated changes in climate:aboveground biomass and community response[J]. Arctic and Alpine Research,1996,28(02):203-209 [34] Ganjurjav H,Gao Q Z,Gornish E S,et al. Differential response of alpine steppe and alpine meadow to climatewarming in the central Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology,2016(223):233-240 [35] 吴红宝,高清竹,干珠扎布,等. 放牧和模拟增温对藏北高寒草地植物群落特征及生产力的影响[J]. 植物生态学报,2019,43(10):853-862 [36] 李娜,王根绪,杨燕,等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响[J]. 生态学报,2011,31(04):895-905 [37] Zhang C H,Willis C G,Klein J A,et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet plateau[J]. Biological Conservation,2017,(213):218-224 [38] Klein J A,Harte J,Zhao X Q. Experimental warming causes large and rapid species loss,dampened by simulated grazing,on the Tibetan Plateau[J]. Ecology Letters,2004,7(12):1170-1179 [39] Chen J,Shi W Y,Cao J J. Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season[J]. Environmental Management,2015,55(02):347-359 [40] Robinson C H,Wookey P A,Parsons A N,et al. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath[J]. Oikos,1995,74(03):503-512 [41] 张文娟. 气候变化与放牧管理对三江源草地生物量和土壤有机碳的影响[D]. 兰州:兰州大学,2018:55-56 [42] 李军祥,张扬建,朱军涛,等. 藏北高山嵩草草甸群落特征及生产力对模拟增温幅度的响应[J]. 生态学报,2019,39(02):474-485 [43] 宗宁,段呈,耿守保,等. 增温施氮对高寒草甸生产力及生物量分配的影响[J]. 应用生态学报,2018,29(01):59-67 [44] Rustad L E,Campbell J L,Marion G M,et al. A meta-analysis of the response of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001,126(04):543-562 [45] Lovettdoust J. Plant strategies,vegetation processes,and ecosystem properties[J]. Journal of Vegetation Science,2002,13(02):294-395 [46] 李娜,王根绪,高永恒,等. 模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究[J]. 土壤学报,2010,47(06):1214-1224 [47] De Valpine P,Harte J. Plant responses to experimental warming in a montane meadow[J]. Ecology,2001,82(03):637-648 [48] 余欣超,姚步青,周华坤,等. 青藏高原两种高寒草甸地下生物量及其碳分配对长期增温的响应差异[J]. 科学通报,2015,60(04):379-388 [49] 徐满厚,薛娴. 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应[J]. 生态学报,2013,33(07):2071-2083 [50] 徐满厚,刘敏,翟大彤,等. 青藏高原高寒草甸生物量动态变化及与环境因子的关系-基于模拟增温实验[J]. 生态学报,2016,36(18):5759-5767 [51] Whittington H R,Deede L,Powers J S. Growth responses,biomass partitioning,and nitrogen isotopes of prairie legumes in response temperature and varying nitrogen source in a growth chamber experiment[J]. American Journal of Botany,2012,99(05):838-846 [52] 杨秀静,黄玫,王军邦,等. 青藏高原草地地下生物量与环境因子的关系[J]. 生态学报,2013,33(07):2032-2042 |