[1] Burns R G,Deforest J L,Marxsen J,et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biology & Biochemistry,2013,58:216-234 [2] 杨成德,龙瑞军,陈秀蓉,等. 东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J]. 草业学报,2007,16(4):62-68 [3] 高海宁,张勇,秦嘉海,等. 祁连山黑河上游不同退化草地有机碳和酶活性分布特征[J]. 草地学报,2014,22(2):283-290 [4] 岳中辉,王博文,庞健,等. 松嫩盐碱草地主要植物群落土壤酶活性研究[J]. 水土保持学报,2009,23(6):160-163,172 [5] 赵帅,张静妮,赖欣,等. 放牧与围封对呼伦贝尔针茅草原土壤酶活性及理化性质的影响[J]. 中国草地学报,2011,33(1):71-76 [6] Liu Y,Ge T,Zhu Z,et al. Carbon input and allocation by rice into paddy soils:A review[J]. Soil Biology & Biochemistry,2019,133:97-107 [7] Fontaine S,Henault C,Aamor A,et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry,2011,43:86-96 [8] Cheng W,Parton W J,Gonzalezmeler M A,et al. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist,2014,201(1):31-44 [9] 许淼平,任成杰,张伟,等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报,2018,29(7):369-378 [10] 王冰冰,曲来叶,马克明,等. 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征[J]. 生态学报,2015,6078-6088 [11] 黄海莉,宗宁,何念鹏,等. 青藏高原高寒草甸不同海拔土壤酶化学计量特征[J]. 应用生态学报,2019,30(11):3689-3696 [12] Allison S D,Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology & Biochemistry,2005,37(5):937-944 [13] Kaiser C,Franklin O,Dieckmann U,et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay[J]. Ecology Letters,2014,17(6):680-690 [14] Moorhead D L,Rinkes Z L,Sinsabaugh R L,et al. Dynamic relationships between microbial biomass,respiration,inorganic nutrients and enzyme activities:informing enzyme-based decomposition models[J]. Front Microbiology,2013,4:223 [15] Hill B H,Elonen C M,Jicha T M,et al. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types[J]. Biogeochemistry,2014,120(1-3):203-224 [16] Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008,11(11):1252-1264. [17] 王毅,刘碧颖,刘苗,等. 若尔盖地区沙化草地土壤酶协同和抑制效应[J]. 草业科学,2019,36(4):939-951 [18] 赵吉. 不同放牧率对冷蒿小禾草草原土壤微生物数量和生物量的影响[J]. 草地学报,1999,7(3):223-227 [19] 李茜,孙亚男,林丽,等. 放牧高寒嵩草草地不同演替阶段土壤酶活性及养分演变特征[J]. 应用生态学报,2019,30(7):2267-2274 [20] 李国旗,赵盼盼,邵文山,等. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究[J]. 草业学报,2019,28(7):49-59 [21] 牛得草,江世高,秦燕,等. 围封与放牧对土壤微生物和酶活性的影响[J]. 草业科学,2013,030(4):528-534 [22] Gai N,Pan J,Tang H,et al. Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie,east edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment,2014,478:90-97 [23] 魏振海,逯军峰,颜长珍,等. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展,2009,24(8):908-916 [24] 胡光印,董治宝,魏振海,等.近30年来若尔盖盆地沙漠化时空演变过程及成因分析[J].地球科学进展,2009,24(8):908-916 [25] Liu M,Zhang Z C,Sun J,et al. One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige,eastern Tibetan Plateau[J]. Global Ecology and Conservation,2020,22(2020) e00951 [26] Liu M,Zhang Z C,Sun J,et al. The Response of Vegetation Biomass to Soil Properties along Degradation Gradients of Alpine Meadow at Zoige Plateau[J]. Chinese Geographical Science.2020,30(3),446-455 [27] Liu M,Zhang Z C,Sun J,et al. Restoration efficiency of short-term grazing exclusion is the highest at the stage shifting from light to moderate degradation at Zoige,Tibetan Plateau[J]. Ecological Indicators,2020,114(2020):106323 [28] 王长庭.人工草地建设对退化草地恢复及持续利用的重要性-《草地生态学》授课中的一些体会[J]. 成功(教育),2010,9:258-259 [29] 秦小静,孙建,王海明.三江源土壤养分分布特征及其对主要气候要素的响应.生态环境学报[J].2015,24(8):1295-1301 [30] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:263-270 [31] 许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:102-287 [32] Moorhead D L,Sinsabaugh R L,Hill B H,et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C,N and P dynamics.[J]. Soil Biology & Biochemistry,2016,93:1-7 [33] 文都日乐,张静妮,李刚,等.放牧干扰对贝加尔针茅草原土壤微生物与土壤酶活性的影响[J].草地学报,2010,18(4):517-522 [34] Wallenius K,Rita H,Mikkonen A,et al. Effects of land use on the level,variation and spatial structure of soil enzyme activities and bacterial communities[J]. Soil Biology & Biochemistry,2011,43(7):1464-1473 [35] Rousk J,Brookes P C,Baath E,et al. Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization[J]. Applied & Environmental Microbiology,2009,75(6):1589-1596 [36] Stephan A,Meyer A H,Schmid B,et al. Plant diversity affects culturable soil bacteria in experimental grassland communities[J]. Journal of Ecology,2000,88:988-998 [37] 郝建朝,吴沿友,连宾,等. 土壤多酚氧化酶性质研究及意义[J]. 土壤通报,2006,37(3):470-474 [38] 袁萍,周嘉聪,张秋芳,等. 中亚热带不同森林更新方式生态酶化学计量特征[J]. 生态学报,2018,38(18):6741-6748 [39] 邵新庆,石永红,韩建国,等. 典型草原自然演替过程中土壤理化性质动态变化[J]. 草地学报,2008,16(6):25-30 [40] 单贵莲,徐柱,宁发,等. 围封年限对典型草原植被与土壤特征的影响[J]. 草业学报,2009,18(2):5-12 [41] 李中林,秦卫华,周守标,等. 短期围栏封育对红松洼自然保护区群落数量特征的影响[J]. 草地学报,2015,23(1):21-26 [42] Wu G,Liu Z,Zhang L,et al. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China[J]. Plant & Soil,2010,332(s1-2):331-337 [43] 郑伟,董全民,李世雄,等. 禁牧后环青海湖高寒草原植物群落特征动态[J]. 草业科学,2014,31(6):1126-1130 [44] 罗久富,周金星,赵文霞,等. 围栏措施对青藏高原高寒草甸群落结构和稳定性的影响[J]. 草业科学,2017,34(3):565-574 [45] 毛绍娟,吴启华,祝景彬,等. 藏北高寒草原群落维持性能对封育年限的响应[J]. 草业学报,2015,24(1):21-30 [46] 李玉强,赵哈林,赵学勇,等. 不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡与碳储量[J]. 草业学报,2006,15(5):27-33 [47] Shi X M,Li X G,Li C T,et al. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai-Tibetan Plateau[J]. Ecological Engineering,2013,57:183-187 [48] Du C,Jing J,Shen Y,et al. Short-term grazing exclusion improved topsoil conditions and plant characteristics in degraded alpine grasslands[J]. Ecological Indicators,2018,108:105680 [49] Deng L,Shangguan Z,Wu G,et al. Effects of grazing exclusion on carbon sequestration in China's grassland[J]. Earth-Science Reviews,2017,173:84-95 [50] Luan J W,Cui L J,Xiang C H,et al.,Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet Plateau[J]. Ecological Engineering,2014,64:262-268 [51] 焦婷,常根柱,周学辉,等. 高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系研究[J]. 草业学报,2009,18(6):100-106 [52] Sinsabaugh R L,Moorhead D L. Resource allocation to extracellular enzyme production:A model for nitrogen and phosphorus control of litter decomposition[J]. Soil Biology & Biochemistry,1994,26(10):1305-1311 [53] Sinsabaugh R L,Hill B H,Shah J J,et al. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature,2010,468(7320):122-122 [54] Adamczyk B,Kilpelainen P,Kitunen V,et al. Potential activities of enzymes involved in N,C,P and S cycling in boreal forest soil under different tree species[J]. Pedobiologia,2014,57(2):97-102 [55] Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008,11(11):1252-1264 [56] Rothstein D E,Zak D R,Pregitzer K S,et al. Nitrate Deposition in Northern Hardwood Forests and the Nitrogen Metabolism of Acer saccharum Marsh[J]. Oecologia,1996,108(2):338-344 [57] Castle S C,Sullivan B W,Knelman J E,et al. Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development[J]. Oecologia,2017,185(3):513-524 [58] 仲波,孙庚,陈冬明,等. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响[J]. 生态环境学报,2017,26(3):392-399 [59] De Araujo A S,Cesarz S,Leite L F,et al. Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil[J]. Soil Biology & Biochemistry,2013,66:175-181 [60] Li J,Zheng Y,Yan J,et al. Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau[J]. China. Journal of Soils & Sediments,2013,13(4):760-769 [61] Castro H,Fortunel C,Freitas H,et al. Effects of land abandonment on plant litter decomposition in a Montado system:relation to litter chemistry and community functional parameters[J]. Plant & Soil,2010,333(1-2):181-190 |