[1] 姜恕. 草地生态研究方法[M]. 北京:农业出版社,1988:10 [2] 徐斌,杨秀春,侯向阳,等. 草原植被遥感监测方法研究进展[J]. 科技导报,2007(9):5-8 [3] 朴世龙,方精云,贺金生,等. 中国草地植被生物量及其空间分布格局[J]. 植物生态学报,2004(4):491-498 [4] 蔡宗磊,苗正红,常雪,等. 基于无人机大样方数据及国产卫星反演草地植被覆盖度方法研究[J]. 草地学报,2019,27(5):1431-1440 [5] 于璐,王迅,柴沙驼,等. 基于高分卫星遥感的天然草地牧草营养含量季节动态反演的研究[J]. 草地学报,2020,28(2):547-557 [6] 渠翠平,关德新,王安志,等.基于MODIS数据的草地生物量估算模型比较[J]. 生态学杂志,2008(11):2028-2032 [7] 牛志春,倪绍祥. 青海湖环湖地区草地植被生物量遥感监测模型[J]. 地理学报,2003(5):695-702 [8] 潘影,张燕杰,武俊喜,等. 基于遥感和无人机数据的草地NDVI影响因子多尺度分析[J]. 草地学报,2019,27(6):1766-1773 [9] 陈鹏飞,Nicolas Tremblay,王纪华,等. 估测作物冠层生物量的新植被指数的研究[J]. 光谱学与光谱分析,2010,30(2):512-517 [10] 高明亮,赵文吉,宫兆宁,等. 基于环境卫星数据的黄河湿地植被生物量反演研究[J]. 生态学报,2013,33(2):542-553 [11] 张正健,刘志红,郭艳芬,等. 基于NDVI的西藏不同草地类型生物量回归建模分析[J]. 高原山地气象研究,2010,30(3):43-47 [12] 辛晓平,徐大伟,何小雷,等. 草地碳循环遥感研究进展[J]. 中国农业信息,2018,30(4):1-16 [13] Näsi,Roope,Viljanen N,Kaivosoja J,et al. Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D Features[J]. Remote Sensing,2018,10(7):1082-2014 [14] Andrew D,Pierce,Calvin A,et al. Use of random forests for modeling and mapping forest canopy fuels for fire behavior analysis in Lassen Volcanic National Park,California,USA - ScienceDirect[J]. Forest Ecology and Management,2012,279(1):77-89 [15] Onisimo Mutanga. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm[J]. International Journal of Applied Earth Observation and Geoinformation 2012.18:399-406 [16] 张爱武,张帅,郭超凡,等. Landsat8光谱衍生数据分类体系下的牧草生物量反演[J]. 光谱学与光谱分析,2020,40(1):239-246 [17] 苏伟,赵晓凤,孙中平,等. 基于Sentinel-2A影像的玉米冠层叶绿素含量估算[J]. 光谱学与光谱分析,2019,39(5):1535-1542 [18] 郑阳,吴炳方,张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报,2017,21(2):318-328 [19] Jurgens,C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data[J]. International Journal of Remote Sensing,1997,18(17):3583-3594 [20] Dong T,Meng J,Shang J,et al. Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation[J]. Selected Topics in Applied Earth Observations and Remote Sensing,IEEE Journal of,2015,8(8):4049-4059 [21] Wu C Y,N Z,G S,et al. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize,coniferous forest and grassland[J]. Ecological Indicators,2012,14(1):66-73 [22] Zarco-Tejada P J,Hornero A,Hernandez-Clemente R,et al. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,137(3):134-148 [23] Boyd D S,Almond S,Dash J,et al. Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data[J]. International Journal of Remote Sensing,2011,32(23):8421-8447 [24] Gitelson A A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation[J]. Journal of Plant Physiology,2004,161(2):0-173 [25] Hardisky M A,Daiber F C,Roman C T,et al. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh[J]. Remote Sensing of Environment,1984,16(2):91-106 [26] E.Raymond Hunt, M.Tugrul Yilmaz. Remote sensing of vegetation water content using shortwave infrared reflectances[C]. San Diego,California,United States,2007:237-239 [27] Liu J,Pattey E,Guillaume Jégo. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment,2012,123:347-358 [28] Jiang Z,Huete A R,Didan K,et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment,2008,112(10):3833-3845 [29] Steven M D. The Sensitivity of the OSAVI Vegetation Index to Observational Parameters[J]. Remote Sensing of Environment,1998,63(1):49-60 [30] Li W,Du Z,Feng L,et al. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM,ETM+and ALI[J]. Remote Sensing,2013,5(11):5530-5549 [31] Ceccato P,Stéphane Flasse,Jean-Marie Grégoire. Designing a spectral index to estimate vegetation water content from remote sensing data:Part 2. Validation and applications[J]. Remote Sensing of Environment,2002,82(2-3):198-207 [32] N.Delbart,T.L.Toan,L.Kergoat,et al. Remote sensing of spring phenology in boreal regions:A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982-2004)[J]. Remote Sensing of Environment,2006,101(1):52-62 [33] 孙诗睿,赵艳玲,王亚娟,等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报,2019,24(11):51-58 [34] 尚珂. 基于支持向量机回归的草地地上生物量遥感估测研究[D]. 昆明:西南林业大学,2015:124 [35] 刘振波,邹娴,葛云健,等. 基于高分一号WFV影像的随机森林算法反演水稻LAI[J]. 遥感技术与应用,2018,33(3):458-464 [36] 江佳乐,刘湘南,刘美玲,等. 基于随机森林的香港海域海表盐度遥感反演模型[J]. 海洋通报,2014,33(3):333-341 [37] 陈妍,宋豫秦,王伟. 基于随机森林回归的草场植被盖度反演模型研究——以新疆阿勒泰地区布尔津县为例[J]. 生态学报,2018,38(7):2384-2394 [38] Meng B,Yi S,Liang T,et al. Modeling alpine grassland above ground biomass based on remote sensing data and machine learning algorithm:A case study in the east of Tibetan Plateau,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,PP(99):2986-2995 [39] Meng B,Ge J,Liang T,et al. Evaluation of Remote Sensing Inversion Error for the Above-Ground Biomass of Alpine Meadow Grassland Based on Multi-Source Satellite Data[J]. REMOTE SENSING,2017,9(4):372-391 |