[1] 麻莹, 王晓苹, 姜海波, 等. 盐碱胁迫下碱地肤体内的有机酸积累及其草酸代谢特点[J]. 草业学报, 2017, 26(7):158-165 [2] 麻莹, 郭立泉, 张淑芳, 等. 盐、碱胁迫对药用植物碱地肤生长及其茎叶离子含量的影响[J]. 东北师大学报(自然科学版), 2017, 49(2):111-115 [3] CAI Z Q, GAO Q. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars[J]. BMC plant biology, 2020, 20(1):70 [4] QUÍ T P. Assessment of the growth of floating rice lines and resistant to salinity at the seed germination and seedling growth stage[J]. IOP Conference Series:Earth and Environmental Science, 2021, 667(1):012056 [5] DESHEVA G, DESHEVA G N, STAMATOY S K. Germination and early seedling growth characteristics of Arachis hypogaea L. under salinity (NaCl) stress[J]. Agriculturae Conspectus Scientificus, 2020, 85(2):113-121 [6] 李天永, 严子柱, 姜生秀. 两种独行菜种子萌发对不同浓度NaCl胁迫的响应[J]. 草地学报, 2021, 29(1):88-94 [7] 潘平新, 倪强, 马瑞, 等. 不同盐分处理对黑果枸杞种子萌发和幼苗生长的影响[J]. 草地学报, 2021, 29(2):342-348 [8] MENG C, QUAN T Y, LI Z Y, et al. Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat[J]. BMC Genomics, 2017, 18(1):24 [9] 郑慧莹, 李建东. 松嫩平原盐生植物及盐碱草地恢复[M]. 北京:科学出版社, 1999:11 [10] DANNEL F, PFEFFER H, MARSCHNER H. Isolation of apoplasmic fluid from sunflower leaves and its use for studies on influence of nitrogen supply on apoplasmic pH[J]. J Plant Physiology, 1995, 146(3):273-278 [11] 邹春琴, 张福锁. 叶片质外体pH降低是铵态氮改善植物铁营养的重要机制[J]. 科学通报, 2003(16):1791-1795 [12] MA Y, WANG X P, ZHANG S F, et al. Effects of salt and alkali stresses on accumulation of oxalic acid, and activity of oxalate-metabolizing enzymes of an alkali-resistant forage plant, Kochia sieversiana[J]. Biologia Plantarum, 2016, 60(4):774-782 [13] MA Y, GUO L Q, WANG H X, et al. Accumulation, distribution and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochia sieversiana, during adaptation to saline and alkaline conditions[J]. Plant nutrition soil science, 2011, 174(4):655-663 [14] 田浩然, 杨傲, 刘航铄, 等. 盐碱胁迫对碱地肤的生物量及含氮化合物的影响[J]. 草业科学, 2019, 36(7):1837-1842 [15] WANG X P, GENG S J, SHI D C. Selective restriction of root to shoot ion transport by cotyledon node zone in Kochia sieversiana may contribute to its tolerance to salt and alkali stresses[J]. Journal of Plant Nutrition, 2019, 42(7):795-804 [16] SONG J, FENG G, TIAN C Y, et al. Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions[J]. Plant Science, 2006, 170(1):113-119 [17] FRANS J M, MAATHUIS I A, PATISHTAN J. Regulation of Na+ fluxes in plants[J]. Plant science, 2014(5):467 [18] LI N, WANG X, MA B, et al. Expression of a Na/H antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2017(21):109-120 [19] MUNNS R. GENES and salt tolerance:bringing them together[J]. New Phytologist, 2005, 167(3):645-663 [20] 麻莹, 曲冰冰, 郭立泉, 等. 盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点[J]. 草业学报, 2007(4):25-33 [21] YANG C W, SHI D C, WANG D L. Comparative effects of salt stress and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regulation, 2008, 56(2):179-190 [22] 李子英, 丛日春, 杨庆山, 等. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J]. 生态学报, 2017, 37(24):8511-8517 [23] 王志强, 吴翠云, 杨哲, 等. 盐碱胁迫对酸枣幼苗生长及生理生化特性的影响[J]. 干旱地区农业研究, 2018, 36(2):153-160 [24] 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种, 2020, 18(10):3441-3448 [25] HILL C, JHA D, BACIC A, et al. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains[J]. Molecular Plant, 2013, 6(2):350-368 |