[1] IPCC. Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva:Switzerland, 2014 [2] GANJURJAV H, GAO Q, GORNISH E S, et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2016, 223(15):233-240 [3] HOPPING K A, KNAPP A K, DORJI T, et al. Warming and land use change concurrently erode ecosystem services in Tibet[J]. Global Change Biology, 2018, 24(11):5534-5548 [4] WEN J, QIN R M, ZHANG S, et al. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land, 2020, 12(2):252-266 [5] ZHAO Z, DONG S, JIANG X, et al. Effects of warming and nitrogen deposition on CH4, CO2and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau[J]. Science of The Total Environment, 2017(592):565-72 [6] ZHU X, LUO C, WANG S, et al. Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the tibetan plateau[J]. Agricultural and Forest Meteorology, 2015(214-215):506-514 [7] QIN Y, YI S, CHEN J, et al. Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau[J]. Cold Regions Science and Technology, 2015(115):77-84 [8] WANG X, DONG S, GAO Q, et al. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China[J]. Soil Biology & Biochemistry, 2014(76):140-142 [9] LIN X, ZHANG Z, WANG S, et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau[J]. Agricultural and Forest Meteorology, 2011(151):792-802 [10] RUI Y, WANG S, XU Z, et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China[J]. Journal of Soil Sediment, 2011, 11(6):903-914 [11] WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5):299-363 [12] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth:New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2010, 62(1):227-250 [13] 张慧, 韩冰, 董全民, 等. AMF及短期增温增雨互作对植物吸收氮磷功能的影响[J].草地学报, 2020, 28(4):1035-1041 [14] JUNG S C, MARTINEZMEDINA A, LOPEZRAEZ J A, et al. Mycorrhiza-induced resistance and priming of plant defenses[J]. Journal of Chemistry Ecology, 2011(38):651-664 [15] WU B, HOGETSU T, ISOBE K, et al. Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji[J]. Mycorrhiza, 2007(38):495-506 [16] ARTURSSON V, FINLAY R D, JANSSON J K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth[J]. Environmental Microbiology, 2006, 8(1):1-10 [17] LEIFHEIT E F, VERBRUGGEN E, RILLIG M C. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation[J]. Soil Biology Biochemistry, 2015(81):323-328 [18] POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018(220):1059-1075 [19] BENNETT J A, MAHERALI H, REINHART K O, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics[J]. Science, 2017(355):181-184 [20] MAHERALI H, KLIRONOMOS J N. Influence of phylogeny on fungal community assembly and ecosystem functioning[J]. Science, 2007(316):1746-1748 [21] YANG W, ZHENG Y, GAO C, et al. The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan plateau[J]. PloS One, 2013(8):e76447 [22] KIM Y, GAO C, ZHENG Y, et al. Different responses of arbuscular mycorrhizal fungal community to daytime and night-time warming in a semiarid steppe[J]. Chinese Science Bulletin, 2014(59):5080-5089 [23] SHI G, YAO B, LIU Y, et al. The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai-Tibet Plateau[J]. Applied Soil Ecology, 2017(121):31-40 [24] KIM Y C, GAO C, ZHENG Y, et al. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem[J]. Mycorrhiza, 2015(25):267-276 [25] SUN X, SU Y, ZHANG Y, et al. Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland[J]. Chinese Science Bulletin, 2013(58):4109-4119 [26] GAO C, KIM Y, ZHENG Y, et al. Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem[J]. Botany, 2016(94):459-469 [27] HEINEMEYER A, RIDGWAY K P, EDWARDS E J, et al. Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community[J]. Global Change Biology, 2004(10):52-64 [28] 牛书丽, 韩兴国, 马克平, 等.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报, 2007, 31(2):262-271 [29] 秦瑞敏, 温静, 张世雄, 等.模拟增温对青藏高原高寒草甸土壤C、N、P化学计量特征的影响[J].干旱区研究, 2020, 37(4):908-916 [30] VANDENKOORNHUYSE P, RIDGWAY K P, WATSON I J, et al. Co-existing grass species have distinctive arbuscular mycorrhizal communities[J]. Molecular Ecology, 2003(12):3085-3095 [31] VERESOGLOU S D, RILLIG M C. Do closely related plants host similar arbuscular mycorrhizal fungal communities? A meta-analysis[J]. Plant Soil, 2014(377):395-406 [32] FITTER A H. Darkness visible:reflections on underground ecology[J]. Journal of Ecology, 2005(93):231-243 [33] LIU Y, SHI G, MAO L, et al. Direct and indirect influences of 8 a of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytologist, 2012(194):523-535 [34] SHI G, LIU Y, JOHNSON N, et al. Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi[J]. Plant Soil, 2014(378):173-188 [35] JOHNSON N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales[J]. New Phytologist, 2010(185):631-647 [36] OLSSON P A, RAHM J, ALIASGHARZAD N. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits[J]. FEMS Microbiology Ecology, 2020(72):125-131 [37] KLEIN J A, HARTE J, ZHAO X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 2004(7):1170-1179 [38] ZHANG C, WILLIS C G, KLEIN J A, et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet plateau[J]. Biological Conservation, 2017(207):27-37 [39] WANG X, DONG S, GAO Q, et al. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China[J]. Soil Biology & Biochemistry, 2014(76):140-142 [40] 赵艳艳, 周华坤, 姚步青, 等. 长期增温对高寒草甸植物群落和土壤养分的影响[J]. 草地学报, 2015, 23(4):665-671 [41] SCHWARZOTT D, SCHUSLER A. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores[J]. Mycorrhiza, 2001(10):203-207 [42] LEE J, LEE S, YOUNG J P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Ecology, 2008(65):339-349 [43] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. Qiime allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010(7):335-336 [44] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open source, platform independent, community supported software for describing and comparing microbial communities[J]. Applied Environment Microbiology, 2009(75):7537-7541 [45] LINDAHL B D, NILSSON R H, TEDERSOO L, et al. Fungal community analysis by high-throughput sequencing of amplified markers——a user's guide[J]. New Phytologist, 2013(199):288-299 [46] OKSANEN J, BLANCHET F G, KINDT R. Vegan:Community Ecology Package R Package version 2. 2-1[EB/OL]. https://github.com/vegandevs/vegan,2017-01-17 [47] KEMBEL S W, COWAN P D, HELMUS M R, et al. Picante:R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010(26):1463-1464 [48] KEMBEL S W. Disentangling niche and neutral influences on community assembly:assessing the performance of community phylogenetic structure tests[J]. Ecology Letters, 2009(12):949-960 [49] TAMURA K, PETERSON D S, PETERSON N, et al. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology Evolution, 2011(28):2731-2739 [50] CHEN X J, LIN Q M, ZHAO X R, et al. Long-term grazing exclusion influences arbuscular mycorrhizal fungi and their association with vegetation in typical steppe of Inner Mongolia, China[J]. Journal of Integrative Agriculture, 2018, 17(6):1445-1453 [51] DU C, GAO Y. Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland[J]. Agriculture Ecosystems and Environment, 2021(308):107256 [52] CDAB C, JIE J, YUAN S D, et al. Short-term grazing exclusion improved topsoil conditions and plant characteristics in degraded alpine grasslands[J]. Ecological Indicators, 108:105680 [53] JOHNSON N C, WILSON G, BOWKER M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences, 2010, 107(5):2093-2098 [54] MILLAR N S, BENNETT A E. Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi[J]. Oecologia, 2016, 182(3):625-641 [55] LIU Y, LIN M, LI J, et al. Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi[J]. Plant and Soil, 2015, 386(1):341-355 [56] READER H. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi[J]. New Phytologist, 2002, 153(2):335-344 [57] HORN S, CARUSO T, VERBRUGGEN E, et al. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales[J]. ISME Journal, 2014, 8(11):2231-2242 [58] CHEN Y L, XU Z W, XU T L, et al. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities[J]. Soil Biology and Biochemistry, 2017(115):233-242 [59] EGAN C P, CALLAWAY R M, HART M M, et al. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient[J]. Mycorrhiza, 2017, 27(3):273-282 [60] DAVISON J, MOORA M, ÖPIK M, et al. Microbial island biogeography:isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities[J]. ISME Journal, 2018(12):2211-2224 [61] MAYFIELD M M, LEVINE J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities[J]. Ecology Letters, 2010(13):1085-1093 |