[1] 卜冬冬, 李昂, 王银柳, 等. 氮素和植物生长促进剂对羊草生长及竞争力的影响[J]. 应用生态学报, 2019, 30(8): 2667-2674 [2] YU G, JIA Y, HE N, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoence, 2019, 12(6): 424-429 [3] 刘永万, 白炜, 尹鹏松, 等. 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响[J]. 草地学报, 2020, 28(2): 195-203 [4] 候文慧, 张玉霞, 王红静, 等. 施氮水平对羊草叶片光合特性和叶绿素荧光特性的影响[J]. 草地学报, 2021, 29(3): 531-536 [5] FORNARA D A, BANIN L, CRAWLEY M J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils[J]. Global Change Biology, 2014, 19(12): 3848-3857 [6] HEYBURN J, MCKENZIE P, CRAWLEY M J, et al. Long-term belowground effects of grassland management: the key role of liming[J]. Ecological Applications, 2017, 27(7): 2001-2012 [7] STEVENS C J, DISE N B, MOUNTFORD J O, et al. Impact of Nitrogen Deposition on the Species Richness of Grasslands[J]. Science, 2004, 303(5665): 1876-1879 [8] YANG Y, JI C, MA W, et al. Significant soil acidification across northern China's grasslands during 1980s—2000s[J]. Global Change Biology, 2012, 18(7): 2292-2300 [9] PENUELAS J, POULTER B, SARDANS J, et al. Humaninduced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications, 2013(4): 94-105 [10] 孙涛, 赵景学, 田莉华, 等. 草地蝗虫发生原因及可持续管理对策[J]. 草业学报, 2010, 19(3): 220-227 [11] WAN S, LUO Y. Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment[J]. Global Biogeochemical Cycles, 2003, 17(2): 1-12 [12] COLLINS S L, KNAPP A K, JOHN M, et al. Modulation of Diversity by Grazing and Mowing in Native Tallgrass Prairie[J]. Science, 1998, 280(5364): 359-373 [13] MARON J L, JEFFRIES R L. Restoring enriched grasslands: Effects of mowing on species richness, productivity, and nitrogen retention[J]. Ecological Applications, 2001, 11(4): 1088-1100 [14] 高榕择. 刈割、氮添加对典型草原群落功能多样性与生态系统多功能性的影响[D]. 呼和浩特: 内蒙古大学, 2020: 10 [15] 赵萌莉, 许志信. 内蒙古草地资源合理利用与草地畜牧业持续发展[J]. 资源科学, 2000(1): 73-76 [16] 施瑶, 王忠强, 张心昱, 等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响[J]. 生态学报, 2014, 34(17): 4943-4949 [17] 何念鹏, 韩兴国, 于贵瑞. 长期封育对不同类型草地碳贮量及其固持速率的影响[J]. 生态学报, 2011(15): 4270-4276 [18] 何念鹏. 锡林河流域温带草地植物VOC释放及其对草地生态系统碳循环的贡献[D]. 北京: 中国科学院植物研究所, 2005: 20 [19] 王惠玲, 刁华杰, 崔乐乐, 等. 北方农牧交错带典型草地土壤呼吸及其组分对刈割强度的响应[J]. 草地学报, 2020, 28(5): 1403-1411 [20] 王兵, 杨锋伟, 郭浩. 森林生态系统服务功能评估规范(LY/T 1721-2008) [M]. 北京: 中国标准出版社, 2008: 78-82 [21] 张玉革, 刘月秀, 杨山, 等. 模拟氮沉降和降水增加对弃耕草地土壤微生物学特性的影响[J]. 沈阳大学学报(自然科学版), 2021, 33(01): 10-19 [22] 王丽华, 刘尉, 王金牛, 等. 不同刈割强度下草地群落、层片及物种的补偿性生长[J]. 草业学报, 2015(6): 35-42 [23] HAN X, SISTLA S A, ZHANG Y, et al. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe[J]. Plant and Soil, 2014, 382(1-2): 175-187 [24] GREGORY V, DAMBRINE E, POLLIER B, et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil[J]. Biogeochemistry, 2014, 122(2-3): 1-19 [25] SMITH A L, BARRETT R L, MILNER R. Annual mowing maintains plant diversity in threatened temperate grasslands[J]. Applied Vegetation Science, 2018, 21(2): 207-218 [26] BAI Y F, WU J G, XING Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau[J]. Ecology, 2008(89): 2140-2153 [27] ZHANG Y, FENG J, ISBELL F, et al. Productivity depends more on the rate than the frequency of N addition in a temperate grassland[J]. Scientific Reports, 2015, 5(1): 1-12 [28] 宗宁, 石培礼, 宋明华, 等. 模拟放牧改变了氮添加作用下高寒草甸生物量的分配模式[J]. 自然资源学报, 2012, 27(10): 1696-1707 [29] FANG Y, XUN, BAI W, et al. Long-Term Nitrogen Addition Leads to Loss of Species Richness Due to Litter Accumulation and Soil Acidification in a Temperate Steppe[J]. Plos One, 2012, 7(10): 1-8 [30] NIU S, MINGYU W U, HAN Y I, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe[J]. Global change biology, 2010, 16(1): 144-155 [31] 彭琴, 董云社, 齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883 [32] LIU Y Z, MIAO R M, CHEN A, et al. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow[J]. Ecological Engineering, 2017(99): 119-125 [33] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379 [34] WANG D, CHI Z, YUE B, et al. Effects of mowing and nitrogen addition on the ecosystem C and N pools in a temperate steppe: A case study from northern China[J]. Catena, 2019, 185(104332): 1-9 [35] YANGA Y, LIUB B R, ANA S S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China[J]. Catena, 2018(166): 328-338 [36] 潘庆民, 白永飞, 韩兴国, 等. 氮素对内蒙古典型草原羊草种群的影响[J]. 植物生态学报, 2005, 29(2): 311-317 [37] 蒋丽, 祝廷成, 马略耕, 等. 松嫩草地碳和水通量对全球变化的响应[J]. 科技导报, 2011, 29(6): 35-42 [38] REID J P, ADAIR E C, REICH H. Biodiversity, nitrogen deposition, and CO2 affect grassland soil carbon cycling but not storage[J]. Ecosystems, 2012, 15(4): 580-590 [39] 卢蒙. 氮输入对生态系统碳、氮循环的影响: 整合分析[D]. 上海: 复旦大学, 2009: 76 [40] LU X, REED S, YU Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant and Soil, 2016, 398(1-2): 111-120 [41] SILVER W L, THOMPSON A W, REICHA, et al. Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention[J]. Ecological Applications, 2005, 15(5): 1604-1614 [42] ZENG D H, LI L J, FAHEY T J, et al. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland[J]. Biogeochemistry, 2010, 98(1): 185-193 [43] MACK M, SCHUUR, BRET-HARTE M, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. [J]. Nature, 2004, 431(7007): 440-443 [44] WANG R, DUNGAIT J, BUSS H L, et al. Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland[J]. Science of The Total Environment, 2016, 575(1): 564-572 [45] HARPOLE W S, NGAI J T, CLELAND E E, et al. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852-862 [46] GRANSEE A, FVHRS H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions[J]. Plant & Soil, 2013, 368(1-2): 5-21 |