[1] GOETZ S J,PRINCE S D,GOWARD S N,et al. Satellite remote sensing of primary production:an improved production efficiency modeling approach[J]. Ecological Modelling,1999,122(3):239-255 [2] POTTER C,KLOOSTER S,MYNENI R,et al. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998[J]. Global and Planetary Change,2003,39(3-4):201-213 [3] XIA J,MA M,LIANG T,et al. Estimates of grassland biomass and turnover time on the Tibetan Plateau[J]. Environmental Research Letters,2018,13(1):014020 [4] YANG S,FENG Q,LIANG T,et al. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region[J]. Remote Sensing of Environment,2018(204):448-455 [5] 黄家兴,吴静,李纯斌,等. 基于Sentinel-2和Landsat 8数据的天祝县草地地上生物量遥感反演[J]. 草地学报,2021,29(9):2023-2030 [6] ZENG N,REN X,HE H,et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators,2019(102):479-487 [7] GAO X,DONG S,LI S,et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau[J]. Ecological Indicators,2020(112):106-114 [8] 李传华,孙皓,王玉涛,等. 基于机器学习估算青藏高原多年冻土区草地净初级生产力[J]. 生态学杂志,2020,39(5):1734-1744 [9] JIA W,LIU M,YANG Y,et al. Estimation and uncertainty analyses of grassland biomass in Northern China:Comparison of multiple remote sensing data sources and modeling approaches[J]. Ecological Indicators,2016(60):1031-1040 [10] QUAN X,HE B,YEBRA M,et al. A radiative transfer model-based method for the estimation of grassland aboveground biomass[J]. International Journal of Applied Earth Observation and Geoinformation,2017(54):159-168 [11] ALI I,CAWKWELL F,DWYER E,et al. Modeling managed grassland biomass estimation by using multitemporal remote sensing data-a machine learning approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(7):3254-3264 [12] XIE Y,SHA Z,YU M,et al. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia,China[J]. Ecological Modelling,2009,220(15):1810-1818 [13] YANG X,XU B,JIN Y,et al. On grass yield remote sensing estimation models of China’s northern farming-pastoral ecotone[C]//Lee G,ed. Advances in Computational Environment Science.Berlin,Heidelberg:Springer,2012:281-291 [14] LYU X,LI X,GONG J,et al. Remote-sensing inversion method for aboveground biomass of typical steppe in Inner Mongolia,China[J]. Ecological Indicators,2021(120):106883 [15] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control,Signals and Systems,1992,5(4):455 [16] MEYER H,LEHNERT L W,WANG Y,et al. From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau:Do we need hyperspectral information?[J]. International Journal of Applied Earth Observation and Geoinformation,2017(55):21-31 [17] JOHN R,CHEN J,GIANNICO V,et al. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia:Spatiotemporal estimates and controlling factors[J]. Remote Sensing of Environment,2018(213):34-48 [18] WANG J,XIAO X,BAJGAIN R,et al. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1,Sentinel-2 and Landsat images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019(154):189-201 [19] XU K,SU Y,LIU J,et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data[J]. Ecological Indicators,2020(108):105747 [20] LI X,XIAO J,HE B,et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes:First global analysis based on OCO-2 and flux tower observations[J]. Global Change Biology,2018,24(9):3990-4008 [21] CAO J,ZHANG Z,TAO F,et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches[J]. Agricultural and Forest Meteorology,2021(297):108275 [22] CAI Y,GUAN K,LOBELL D,et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches[J]. Agricultural and Forest Meteorology,2019(274):144-159 [23] ZHANG H,FAN J,WANG J,et al. Spatial and temporal variability of grassland yield and its response to climate change and anthropogenic activities on the Tibetan Plateau from 1988 to 2013[J]. Ecological Indicators,2018(95):141-151 [24] HE L,LI Z,WANG X,et al. Lagged precipitation effect on plant productivity is influenced collectively by climate and edaphic factors in drylands[J]. Science of the Total Environment,2021(755):142506 [25] PIAO S,TAN K,NAN H,et al. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades[J]. Global and Planetary Change,2012(98-99):73-80 [26] DING J,YANG T,ZHAO Y,et al. Increasingly important role of atmospheric aridity on Tibetan alpine grasslands[J]. Geophysical Research Letters,2018,45(6):2852-2859 [27] Editorial Board of Vegetation Map of China,Chinese Academy of Science. Vegetation atlas of China (1∶1000000)[M]. Beijing:Science Press,2001:129-132 [28] DIDAN K. MOD13Q1 MODIS/Terra vegetation indices 16-Day L3 global 250 m SIN grid V006[DB/OL].https://doi.org/10.5067/MODIS/MOD13Q1.006,2019-02-05/2019-04-15 [29] ZHANG Y,JOINER J,ALEMOHAMMAD S H,et al. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks[J]. Biogeosciences,2018,15(19):5779-5800 [30] MUÑOZ SABATER J. ERA5-Land monthly averaged data from 1981 to present[DB/OL].https://doi.org/10.24381/cds.68d2bb30,2019-07-12/2020-12-05 [31] HE J,YANG K,TANG W,et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data,2020,7(1):25 [32] YANG K,HE J,TANG W,et al. On downward shortwave and longwave radiations over high altitude regions:Observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2010,150(1):38-46 [33] YANG K,HE J. China meteorological forcing dataset (1979-2018)[DB/OL].https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file,2020-11-13/2020-12-19 [34] 除多,德吉央宗,普布次仁,等. 藏北草地地上生物量及遥感监测模型研究[J]. 自然资源学报,2013,28(11):2000-2011 [35] 李猛,何永涛,张林波,等. 三江源草地ANPP变化特征及其与气候因子和载畜量的关系[J]. 中国草地学报,2017,39(3):49-56 [36] 侯尧宸. 基于遥感和牧草饲用价值的高寒草地资源评价方法研究[D].兰州:兰州大学, 2015:16-17 [37] ZHANG X,NIU B. The vegetation biomass data of the North Tibet transect (2017)[DB/OL]. https://dx.doi.org/10.11888/Ecolo.tpdc.270982,2020-07-02/2021-06-06 [38] 温美佳,贾光林,宋经元,等. 若尔盖白河牧场地上生物量与遥感植被指数关系研究[J]. 世界科学技术(中医药现代化),2012,14(1):1189-1194 [39] 张锦华. 藏北公路沿线车辆碾压干扰下矮嵩草草甸恢复演替及“3S”监测研究[D].成都:四川农业大学, 2006:60 [40] 干友民,成平,周纯兵,等. 若尔盖亚高山草甸地上生物量与植被指数关系研究[J]. 自然资源学报,2009,24(11):1963-1972 [41] 解平静. 高原湿地植被地上生物量遥感估算方法及时空变化研究[D].西安:电子科技大学, 2012:20 [42] YANG Y, FANG J, MA W,et al. Large-scale pattern of biomass partitioning across China-s grasslands[J]. Global Ecology and Biogeography,2010,19(2):268-277 [43] ZHENG Z,ZHU W,ZHANG Y. Seasonally and spatially varied controls of climatic factors on net primary productivity in alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Conservation,2020(21):e00814 [44] RUNNING S,ZHAO M. MOD17A3HGF MODIS/Terra net primary production gap-filled yearly L4 global 500 m SIN grid V006[DB/OL].https://doi.org/10.5067/MODIS/MOD17A3HGF.006,2020-01-27/2020-08-04 [45] WANG M,SUN R,ZHU A,et al. Evaluation and comparison of light use efficiency and gross primary productivity using three different approaches[J]. Remote Sensing,2020,12(6):1003 [46] 莫兴国,刘文,孟铖铖,等. 青藏高原草地产量与草畜平衡变化[J]. 应用生态学报,2021,32(7):2415-2425 [47] WANG X. 8 km resolution vegetation net primary productivity data set of the Tibetan Plateau (1990-2015)[DB/OL]. https://doi.org/10.11888/Ecolo.tpdc.271032,2021-01-05/2021-02-27 [48] LI M,WU J,FENG Y,et al. Climate variability rather than livestock grazing dominates changes in alpine grassland productivity across Tibet[J]. Frontiers in Ecology and Evolution,2021(9):119 [49] LIU W,MO X,LIU S,et al. Attributing the changes of grass growth,water consumed and water use efficiency over the Tibetan Plateau[J]. Journal of Hydrology,2021(598):126464 [50] CAI D,GE Q,WANG X,et al. Contributions of ecological programs to vegetation restoration in arid and semiarid China[J]. Environmental Research Letters,2020,15(11):114046 [51] SUN J,ZHOU T,LIU M,et al. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Biogeography,2020,29(1):50-64 [52] 姚喜喜,才华,李长慧. 封育和放牧对高寒草甸植被群落特征和土壤特性的影响[J]. 草地学报,2021,29(Z1):128-136(责任编辑 彭露茜)第30卷 第2期 Vol.30 No. 2草 地 学 报 ACTAAGRESTIASINICA 2022年 2月 |