[1] 王泳超,张颖蕾,闫东良,等.干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J].草业学报,2020,29(6):191-203 [2] STEWARD F C,THOMPSON J F,DENT C E. γ-aminobutyric acid:a constituent of the potato tuber?[J]. Science,1949(110):439-440 [3] 简令成.植物抗寒机理研究的新进展[J].植物学通报,1992(3):17-16,22 [4] LI L,DOU N,ZHANG H,et al. The versatile GABA in plants[J]. Plant Signaling&Behavior,2021,16(3):1862565 [5] LI Z,CHENG B,PENG Y,et al. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass[J]. Plant Physiology and Biochemistry,2020(157):185-194 [6] 宋红苗,陶跃之,王慧中,等. GABA在植物体内的合成代谢及生物学功能[J].浙江农业科学,2010(2):225-229 [7] RAMPUTH A I,BOWN A W. Rapid gamma-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae[J]. Plant Physiology,1996,111(4):1349-1352 [8] 张海龙,陈迎迎,杨立新,等. γ-氨基丁酸对植物生长发育和抗逆性的调节作用[J].植物生理学报,2020,56(4):600-612 [9] 贾琰,杨亮,邹德堂,等.孕穗期冷水胁迫下施用外源物质对寒地粳稻氮光合效率及产量的影响[J].中国水稻科学,2020,34(5):443-456 [10] 张换换. γ-氨基丁酸对蓝莓玻璃化试管苗的恢复作用及机制研究[D].大连:大连理工大学,2021:11-12 [11] HARE P D,CRESS W A. Metabolic implications of stress-induced proline accumulation in plants[J]. Plant Growth Regulation,1997,21(2):79-102 [12] 闫朝阳,李旭,查士银,等. γ-氨基丁酸的研究与应用进展[J].济南大学学报(自然科学版),2020,34(4):395-401 [13] 燕子红,赵彦梁,范东升,等. γ-氨基丁酸(GABA)在农业生产中的应用[J].化肥设计,2021,59(3):1-4,18 [14] 赵嫚,陈仕勇,李亚萍,等.外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J].江苏农业学报,2021,37(2):310-316 [15] 王燚. 5-氨基乙酰丙酸(ALA)缓解玉米早春低温胁迫生理机制[D].哈尔滨:东北农业大学,2019:25-26 [16] 施燕华,黄玉婷,束方智,等.外源谷氨酸对铝胁迫下多花黑麦草幼苗生长的缓解作用[J].草地学报,2020,28(6):1605-1614 [17] 朱广龙,宋成钰,于林林,等.外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J].作物学报,2018,44(11):1713-1724 [18] 王骁.外源GABA对盐胁迫下西伯利亚白刺种子萌发及幼苗生长的影响[D].哈尔滨:东北农业大学,2020:23-25 [19] 赵旭,陈仕勇,刘伟,等. NaCl胁迫及外源GABA对垂穗披碱草种子萌发的影响[J].种子,2021,40(7):39-44 [20] 龚动庭.硅与γ-氨基丁酸引发对低温胁迫下油菜种子萌发与幼苗生长的影响[D].浙江:浙江大学,2019:44-47 [21] LYU X,FANG Y,ZHANG L,et al. Effects of melatonin on growth,physiology and gene expression in rice seedlings under cadmium stress[J]. Phyton-International Journal of Experimental Botany,2019,88(2):91-100 [22] CHENG B,LI Z,LIANG L,et al. The γ-Aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation,dehydrins accumulation,and stress-related genes expression in white clover[J]. International Journal of Molecular Sciences,2018,19(9):2520 [23] 符京燕,梁林林,周敏,等.伽马氨基丁酸浸种对铝胁迫下白三叶种子萌发及耐铝性的影响[J].草地学报,2020,28(5):1275-1284 [24] 曲斌.外源GABA对盐碱胁迫下甜瓜种子萌发及生理特性的影响[D].杨凌:西北农林科技大学,2015:8-9 [25] SUN Y J,HE Y H,IRFAN A R,et al. Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress[J]. Agronomy,2020,10(4):1-18 [26] 于立尧.外源γ(氨基丁酸对甜瓜幼苗生长、抗干旱胁迫的影响[D].上海:上海交通大学,2018:17-18 [27] 王泳超. γ(氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制[D].哈尔滨:东北农业大学,2016:29-30 [28] HARSH N,RAMANPREET K,SIMRANJIT K,et al. γ-Aminobutyric Acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J]. Journal of Plant Growth Regulation,2014,33(2):408-419 [29] BEUVE N,RISPAIL N,LAINE P,et al. Putative role of γ-aminobutyric acid (GABA) in upregulation of nitrate uptake in Brassica napus L.[J]. Plant Cell and Environment,2004,27(8):1035-1041 [30] 范龙泉,杨丽文,高洪波,等. γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响[J].应用生态学报,2012,23(6):1599-1606 [31] 尹秀晶,刘松,秦玉坤,等.新型壳寡糖γ(氨基丁酸衍生物的制备及其对小麦幼苗抗旱作用的研究[J].海洋科学,2020,44(5):42-52 [32] CARILLO P. GABA shunt in durum wheat[J]. Frontiers in Plant Science,2018(9):100 [33] 罗黄颖,高洪波,夏庆平,等. γ(氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J].中国农业科学,2011,44(4):753-761 [34] 李敬蕊,杨丽文,王春燕,等. γ(氨基丁酸对低氧胁迫下甜瓜幼苗抗氧化酶活性及表达的影响[J].东北农业大学学报,2014,45(11):28-36 [35] RAMESH S A,TYERMAN S D,XU B,et al. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters[J]. Nature Communications,2015(6):8293 [36] SALAH A,ZHAN M,CAO C,et al. γ(aminobutyric acid promotes chloroplast ultrastructure,antioxidant capacity,and growth of waterlogged maize seedlings[J]. Scientific Reports,2019(9):484 [37] HOLÁ D,KOČOVÁ M,ROTHOVá O,et al. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration:Photosynthesis and antioxidant enzymes[J]. Journal of Plant Physiology,2007,164(7):868-877 [38] ASHRAF M,HARRIS P. Photosynthesis under stressful environments:an overview[J]. Photosynthetica,2013,51(2):163-190 [39] 王芳,刘燕,王铁兵,等.外源褪黑素对玉米幼苗盐胁迫的缓解效应研究[J].中国草地学报,2020,42(5):14-21 [40] 王春燕,李敬蕊,夏庆平,等.外源γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗根系GABA代谢及氨基酸含量的影响[J].应用生态学报,2014,25(7):2011-2018 [41] 王馨,闫永庆,殷媛,等.外源γ-氨基丁酸(GABA)对盐胁迫下西伯利亚白刺光合特性的影响[J].江苏农业学报,2019,35(5):1032-1039 [42] 刘文.乙烯利对日本结缕草低温胁迫响应的影响[D].北京:北京林业大学,2019:21-22 [43] 陈梓健.外源GABA对高温、干旱胁迫下高羊茅的生理影响[D].广州:仲恺农业工程学院,2017:21-22 [44] 夏庆平,高洪波,李敬蕊. γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响[J].应用生态学报,2011,22(4):999-1006 [45] 王磊.盐胁迫下菊芋幼苗对水杨酸和氮素生理响应的研究[D].南京:南京农业大学,2011:79-80 [46] FAЁS P,NIOGRET M F,MONTES E,et al. Transcriptional profiling of genes encoding GABA-transaminases in Brassica napus reveals their regulation by water deficit[J]. Environmental and Experimental Botany,2015(116):20-31 [47] 谷海涛.外源γ-氨基丁酸对孕穗期干旱胁迫下寒地粳稻氮代谢及产量的调控效应[D].哈尔滨:东北农业大学,2018:24-26 [48] 沙汉景.水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻氮代谢及产质量的调控效应[D].哈尔滨:东北农业大学,2018:25-26 [49] 曹让.棉花幼苗γ-氨基丁酸代谢及对干旱胁迫的响应[D].石河子:石河子大学,2013:28-29 [50] 薄义博. γ-氨基丁酸(GABA)在棉花低氮胁迫响应中的功能研究[D].重庆:西南大学,2018:37-38 [51] 宋锁玲,李敬蕊,高洪波,等. γ-氨基丁酸对低氧胁迫下甜瓜幼苗氮代谢及矿质元素含量的影响[J].园艺学报,2012,39(4):695-704 [52] 任文奇.外源γ-氨基丁酸对Ca (NO3)2胁迫下甜瓜幼苗氮代谢和光合作用的调控[D].杨凌:西北农林科技大学,2016:28-30 [53] 弓瑞娟. γ-氨基丁酸对生菜氮代谢及营养品质的影响[D].保定:河北农业大学,2012:18-19 [54] MA X,ZHU C,YANG N,et al. γ-Aminobutyric acid addition alleviates ammonium toxicity bylimiting ammonium accumulation in rice (Oryza sativa) seedlings[J]. Physiologia Plantarum,2016,158(4):389-401 [55] XING S G,JUN Y B,HUA Z W,et al. Higher accumulation of γ(aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots[J]. Plant Physiology and Biochemistry,2007,45(8):560-566 [56] 曾晴,谢菲,尹京苑,等.大豆发芽富集γ(氨基丁酸的培养液组分优化及盐胁迫下的富集机理[J].食品科学,2017,38(12):96-103 [57] 李杰,孙阳,杨德翠,等. γ-氨基丁酸对干旱胁迫下白三叶苗内源激素含量的影响[J].青岛农业大学学报:自然科学版,2008,25(1):6-9 [58] MORTEZA S A,ROOHANGIZ N,PARVIZ M,et al. Contribution of GABA shunt to chilling tolerance in anthurium cut flowers in response to postharvest salicylic acid treatment[J]. Scientia Horticulturae,2016(205):90-96 [59] GILLIHAM M,TYERMAN S D. Linking metabolism to membrane signaling:the GABA-malate connection[J]. Trends in Plant Science,2016,21(4):295-301 [60] HU X H,ZHANG Y,SHI Y,et al. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress[J]. Plant Physiology and Biochemistry,2012(57):200-209 [61] YANG R,WANG S,YIN Y,et al. Hypoxia treatment on germinating faba bean (Vicia faba L.) seeds enhances GABA-related protection against salt stress[J]. Chilean journal of agricultural research,2015,75(2):184-191 [62] 孙鑫博,韩烈保.亚精胺、精胺对结缕草低温下内源激素含量及内源多胺代谢的影响[J].草地学报,2015,23(4):804-810 [63] HU X H,XU Z R,XU W N,et al. Application of g-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca (NO3)2stress[J]. Plant Physiology and Biochemistry,2015(92):1-10 [64] WANG C Y,FAN L Q,GAO H B,et al. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots[J]. Plant Physiology and Biochemistry,2014(82):17-26 |