[1] 谢高地,张钇锂,鲁春霞,等.中国自然草地生态系统服务价值[J].自然资源学报,2001,16(1):47-53 [2] 采编部,刘源. 2016年全国草原监测报告[J].中国畜牧业,2017(8):18-35 [3] 刘洪来,鲁为华,陈超.草地退化演替过程及诊断研究进展[J].草地学报,2011,19(5):865-871 [4] 蒋翔,马建霞.我国草地生态恢复对不同因素响应的Meta分析[J].草业学报,2021,30(2):14-31 [5] 刘世梁,孙永秀,赵海迪,等.基于多源数据的三江源区生态工程建设前后草地动态变化及驱动因素研究[J].生态学报,2021,41(10):3865-3877 [6] 梁万鹏,杨云贵,程杰,等.建立数学模型估测牧草产量研究[J].水土保持通报,2010,30(5):138-142 [7] 李素英,李晓兵,莺歌,等.基于植被指数的典型草原区生物量模型-以内蒙古锡林浩特市为例[J].植物生态学报,2007,31(1):23-31 [8] 王新欣,朱进忠,范燕敏,等.基于MODIS-NDVI的天山北坡中段草地动态估产模型研究[J].草业科学,2009,26(7):24-27 [9] JIN X Y,YANG X C,QIU J J,et al. Remote Sensing-Based biomass estimation and its spatio-temporal variations in temperate grassland,Northern China[J]. Remote Sensing,2014,6(2):1496-1513 [10] 王艳杰,王卷乐,魏海硕,等.基于稀疏样点的蒙古国产草量估算方法研究[J].地球信息科学学报,2020,22(9):1814-1822 [11] 王新云,郭艺歌,何杰.基于多源遥感数据的草地生物量估算方法[J].农业工程学报,2014,30(11):159-166,294 [12] 郭超凡,陈泽威,张志高.基于最优模型选择的牧草地上生物量遥感估算研究[J].草地学报,2021,29(5):946-955 [13] 杜玉娥,刘宝康,郭正刚.基于MODIS的青藏高原牧草生长季草地生物量动态[J].草业科学,2011,28(6):1117-1123 [14] 贺俊杰.锡林郭勒草地NDVI和牧草估产产量的变化特征[J].中国农学通报,2015,31(17):1-5 [15] 王正兴,刘闯,赵冰茹,等.利用MODIS增强型植被指数反演草地地上生物量[J].兰州大学学报,2005,41(2):10-16 [16] 杨靖民,杨靖一,姜旭,等.作物模型研究进展[J].吉林农业大学学报,2012,34(5):553-561 [17] 朱津辉,戴萍,朱凯全,等. WOFOST模型的研究进展[J].安徽农业科学,2016,44(28):194-196,202 [18] BOOTE K J,JONES J W,HOOGENBOOM G,et al. Understanding options for agricultural production[M]. Dordrecht:Springer,1998:99-128 [19] RYMPH S J,BOOTE K J,IRMAK A,et al. Adapting the CROPGRO model to predict growth and composition of tropical grasses:developing physiological parameters[J]. Soil and Crop Science Society of Florida Proceedings,2004(63):37-51 [20] PEDREIRA B C,PEDREIRA C G S,BOOTE K J,et al. Adapting the CROPGRO perennial forage model to predict growth of Brachiaria brizantha[J]. Field Crops Research,2011,120(3):370-379 [21] PEQUENO D N L,PEDREIRA C G S, BOOTE K J. Simulating forage production of Marandu palisade grass (Brachiaria brizantha) with the CROPGRO-Perennial Forage model[J]. Crop and Pasture Science,2014(65):1335-1348 [22] LARA M A S,PEDREIRA C G S,BOOTE K J,et al. Predicting growth of Panicum maximum:an adaptation of the CROPGRO-perennial forage model[J]. Agronomy Journal,2012,104(3):600-611 [23] SANTOS M G,BOOTE K J,FARIA R T,et al. Simulation of productivity and soil moisture under Marandu palisade grass using the CSM-CROPGRO-Perennial Forage model[J]. Crop&Pasture Science,2019(70):159-168 [24] JING Q,QIAN B,BéLANGER G,et al. Simulating alfalfa regrowth and biomass in eastern Canada using the CSM-CROPGRO-perennial forage model[J]. European Journal of Agronomy,2020(113):125971 [25] PEQUENO D N L,PEDREIRA C G S,BOOTE K J,et al. Species-genotypic parameters of the CROPGRO Perennial Forage Model:implications for comparison of three tropical pasture grasses[J]. Grass and Forage Science,2018,73(2):440-455 [26] BOSI C,SENTELHAS P C,PEZZOPANE J R M,et al. CROPGRO-Perennial forage model parameterization for simulating Piatä palisade grass growth in monoculture and in a silvopastoral system[J]. Agricultural Systems,2020(177):102724 [27] FILLERY I,GREGORY P J and BOWDEN J W. Performance of the APSIM-wheat model in Western Australia[J]. Field Crops Research,1998,57(2):163-179 [28] ASSENG S,KEULEN H V and STOL W. Performance and application of the APSIM Nwheat model in the Netherlands[J]. European Journal of Agronomy,2000,12(1):37-54 [29] KEATING B A,CARBERRY P S,HAMMER G L,et al. An overview of APSIM,a model designed for farming systems simulation[J]. European Journal of Agronomy,2003,18(3):267-288 [30] ARAUJO L C,SANTOS P M,RODROGUEZ D,et al. Simulating Guineagrass production:empirical and mechanistic approaches[J]. Agronomy Journal,2013,105(1):61-69 [31] ANDRADE A S,SANTOS P M,PEZZOPANE J R M,et al. Simulating tropical forage growth and biomass accumulation:an overview of model development and application[J]. Grass and Forage Science,2016,71(1):54-65 [32] DIEPEN C A,WOLF J,KEULEN H V,et al. WOFOST:a simulation model of crop production[J]. Soil Use&Management,1989,5(1):16-24 [33] 黄健熙,高欣然,黄海,等.基于MODIS与WOFOST模型同化的区域冬小麦成熟期预测[J].农业机械学报,2019,50(9):186-193 [34] 王涛,吕昌河,于伯华.基于WOFOST模型的京津冀地区冬小麦生产潜力评价[J].自然资源学报,2010,25(3):475-487 [35] 黄健熙,武思杰,刘兴权,等.基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测[J].农业工程学报,2012,28(4):142-148 [36] 张雪婷.基于作物生长模型和遥感数据同化的草地生物量估算方法及应用[D].成都:电子科技大学,2017:60 [37] HE B,LI X,QUAN X,et al. Estimating the aboveground dry biomass of grass by assimilation of retrieved LAI into a crop growth model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(2):550-561 [38] JOUVEN M,CARRōRE P, BAUMONT R. Model predicting dynamics of biomass,structure and digestibility of herbage in managed permanent pastures. 1. Model description[J]. Grass and Forage Science,2006(61):112-124 [39] JOUVEN M,CARRōRE P, BAUMONT R. Model predicting dynamics of biomass,structure and digestibility of herbage in managed permanent pastures. 2. Model description[J]. Grass and Forage Science,2006(61):125-133 [40] HURTADO-URIA C,HENNESSY D,SHALLOO L,et al. Evaluation of three grass growth models to predict grass growth in Ireland[J]. The Journal of Agricultural Science,2012,151(1):91-104 [41] CALANCA P,DELÉGLISE C,MARTIN R,et al. Testing the ability of a simple grassland model to simulate the seasonal effects of drought on herbage growth[J]. Field Crops Research,2016(187):12-23 [42] RUELLE E,HENNESSY D, DELABY L. Development of the Moorepark St Gilles grass growth model (MoSt GG model):A predictive model for grass growth for pasture-based systems[J]. European Journal of Agronomy,2018(99):80-91 [43] KATATA G,GROTE R,MAUDER M,et al. Wintertime grassland dynamics may influence belowground biomass under climate change:a model analysis[J]. Biogeosciences,2020(17):1071-1085 [44] HÖGLIND M,VAN OIJEN M,CAMERON D,et al. Process-based simulation of growth and overwintering of grassland using the BASGRA model[J]. Ecological Modelling,2016(335):1-5 [45] ZHAO F,XU B,YANG X C,et al. Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP):a case study in the Xilingol grassland of Northern China[J]. Remote Sensing,2014,6(6):5368-5386 [46] 李庆,王洪涛,刘文,等.以HJ-1卫星遥感数据估算高寒草地植被净第一性生产力的潜力评估——以若尔盖草地为例[J].中国沙漠,2013,33(4):1250-1255 [47] 张仁平,郭靖,张云玲.新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应[J].生态学报,2020,40(15):5318-5326 [48] 刘洁,孟宝平,葛静,等.基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究[J].草业学报,2019.28(6):19-32 [49] 王国成,张稳,黄耀. 1981-2001年内蒙古草地净初级生产力时空变化特征[J].草业科学,2011,28(11):2016-2025 [50] FAN J W,SHAO Q Q,LIU J Y,et al. Assessment of effects of climate change and grazing activity on grass land yield in the three rivers headwaters region of Qinghai-Tibet Plateau,China[J]. Environmental Monitoring and Assessment,2010,170(1-4):571-584 [51] 马良,朱再春,曾辉.NPP评估过程模型应用研究进展[J].中国沙漠,2017,37(6):1250-1260 [52] 李传华,韩海燕,范也平,等.基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J].地理科学,2019,39(8):1330-1339 [53] 穆少杰,周可新,陈奕兆,等.内蒙古典型草原不同群落净生态系统生产力的动态变化[J].生态学杂志,2014,33(4):885-895 [54] 郭灵辉,郝成元,吴绍洪,等.内蒙古草地NPP变化特征及其对气候变化敏感性的CENTURY模拟研究[J].地理研究,2016,35(2):271-284 [55] CHITI T,PAPALE D,SMITH P,et al. Predicting changes in soil organic carbon in mediterranean and alpine forests during the Kyoto Protocol commitment periods using the CENTURY model[J]. Soil Use and Management,2010,26(4):475-484 [56] 尚珂.基于支持向量机回归的草地地上生物量遥感估测研究[D].昆明:西南林业大学,2015:26-38 [57] 陈思宁,赵艳霞,申双和,等.基于PyWOFOST作物模型的东北玉米估产及精度评估[J].中国农业科学,2013,46(14):2880-2893 [58] 陈劲松,黄健熙,林珲,等.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学:信息科学,2010(S1):173-183 [59] 王航,朱艳,马孟莉,等.基于更新和同化策略相结合的遥感信息与水稻生长模型耦合技术的研究[J].生态学报,2012,32(14):4505-4515 [60] 张树誉,孙辉涛,王鹏新,等.基于同化叶面积指数和条件植被温度指数的冬小麦单产估测[J].干旱地区农业研究,2017,35(6):266-271,293 [61] 黄健熙,黄海,马鸿元,等.遥感与作物生长模型数据同化应用综述[J].农业工程学报,2018,34(21):144-156 [62] HUANG J X,TIAN L Y,LIANG S L,et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and Forest Meteorology,2015(204):106-121 [63] 包姗宁,曹春香,黄健熙,等.同化叶面积指数和蒸散发双变量的冬小麦产量估测方法[J].地球信息科学学报,2015,17(7):871-882 [64] DONG T,LIU J,QIAN B,et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observations&Geoinformation,2016(49):63-74 [65] JIN H,LI A,WANG J D,et al. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data[J]. European Journal of Agronomy,2016(78):1-12 [66] SILVESTRO P C,PIGNATTI S,PASCUCCI S,et al. Estimating wheat yield in China at the field and district scale from the assimilation of satellite data into the Aquacrop and simple algorithm for yield (SAFY) models[J]. Remote Sensing,2017,9(6):509-532 [67] HUANG J X,SEDANO F,HUANG Y B,et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation[J]. Agricultural and Forest Meteorology,2016(216):188-202 [68] 陶伟国,徐斌,杨秀春.草原产草量遥感估算方法发展趋势及影响因素[J].草业学报,2007(2):1-8 [69] ZHANG Y,SHU Q D,WANG L,et al. Estimation of fuel biomass for grasslands using data assimilation technique[C]//IEEE. 2019 IEEE international geoscience and remote sensing symposium. Yokohama:2019:9988-9991 [70] NOUVELLON Y,MORAN M S,CHEHBOUNI A,et al. Assimilating LANDSAT data in an ecosystem model for multi-year simulation of grassland carbon,water and energy budget[C]//Stein,TI. IEEE International Symposium on Geoscience and Remote sensing (IGARSS). HONOLULU:2000:1966-1968 [71] HUANG X,ZHAO G,ZORN C,et al. Grass modelling in data-limited areas by incorporating MODIS data products[J]. Field Crop Research,2021(271):108250 |