草地学报 ›› 2022, Vol. 30 ›› Issue (4): 850-858.DOI: 10.11733/j.issn.1007-0435.2022.04.010

• 专论与进展 • 上一篇    

草地地上生物量估算模型研究进展

张雨欣1, 黄健熙1, 金云翔2, 王洁3, 赵圆圆1, 冯权泷1, 马钦4   

  1. 1. 中国农业大学土地科学与技术学院, 北京 100083;
    2. 中国农业科学院农业资源与农业区划研究所, 北京 100081;
    3. 中国农业大学草业科学与技术学院, 北京 10083;
    4. 中国农业大学信息与电气工程学院, 北京 100083
  • 收稿日期:2021-10-08 修回日期:2021-11-23 发布日期:2022-04-25
  • 通讯作者: 黄健熙,E-mail:jxhuang@cau.edu.cn
  • 作者简介:张雨欣(1998-),女,重庆云阳人,硕士研究生,主要从事草地地上生物量遥感同化估算研究,E-mail:zyx_geo@163.com
  • 基金资助:
    国家重点研发计划(编号:2018YFE0122700)资助

Estimation of Grasslands Aboveground Biomass:A Review

ZHANG Yu-xin1, HUANG Jian-xi1, JIN Yun-xiang2, WANG Jie3, ZHAO Yuan-yuan1, FENG Quan-long1, MA Qin4   

  1. 1. College of Land Science and Technology, China Agricultural University, Beijing 100083, China;
    2. Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, China;
    3. College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China;
    4. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
  • Received:2021-10-08 Revised:2021-11-23 Published:2022-04-25

摘要: 草地地上生物量监测是合理利用草地资源,掌握草原生态演替过程的重要依据。但是,实时观测草地地上生物量信息需要耗费大量的人力物力,亟需借助遥感、数学等工具进行间接观测。本文系统阐述了国内外主流的草地地上生物量估算方法,包括遥感统计模型、草地生长模型、作物生长模型、光能利用率模型和生态过程模型等模型,以及遥感与机理模型耦合模型,概述了当前主流模型的特点及其适用条件,总结了相关的研究策略。结合草地估产的现实需求,梳理了现有的农业遥感数据同化研究进展,展望了基于遥感数据同化方法的草地地上生物量估算思路,为草地生长模拟的大区域、高精度研究提供了新的思路。

关键词: 草地, 地上生物量, 估算模型, 数据同化, 遥感

Abstract: The monitoring of grassland aboveground biomass is an important basis for the rational utilization of grassland resources and understanding of the grassland ecological succession process.However,real-time observation of grassland aboveground biomass requires a lot of manpower and material resources,so it is urgent to use remote sensing,mathematics,and other indirect observation methods.This review systematically concluded the domestic and foreign methods of grassland aboveground biomass estimation including statistical models and mechanism models such as grassland growth models,crop growth models,light use efficiency models,and ecological process models for grassland aboveground biomass estimation.We summarized the characteristics and applicable conditions of the current models,and the relevant scientific concepts and strategies in researches.By reviewing researches on agricultural remote sensing data assimilation meeting the realistic requirements of grassland yield estimation,this review presents a less popular approach of estimating grassland yield based on the remote sensing data assimilation method,which provides a large-scale and high-precision way on grassland growth simulation.

Key words: Grassland, Aboveground biomass, Estimation model, Data assimilation, Remote sensing

中图分类号: