[1] 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1984:61-64 [2] 陈之端,路安民,刘冰,等.中国维管植物生命之树[M].北京:科学出版社,2011:576-587 [3] 刘小冬,沈志宏.论木槿属观赏植物资源[J].黑龙江生态工程职业学院学报,2011,24(4):6-8 [4] 粟建光,邓丽卿.木槿属植物种的形态分类学研究[J].中国麻作,1996,18(2):18-20 [5] 吴征镒. Flora of China[M].北京:科学出版社,2007:286-294 [6] 吴征镒,路安民,汤彦承,等.中国被子植物科属综论[M].北京:科学出版社出版,2003:546-553 [7] 余慈英,徐树华.海滨木槿的驯化和开发利用前景[J].林业科学研究,1999,12(2):210-213 [8] 孙航,周浙昆.中国植物区系新资料[J].云南植物研究,1998,1(1):41-49 [9] 中国科学院华南植物园.广东植物志[M].广州:广东科技出版社,2009:180-204 [10] 高筱钰,丁释丰,冯志坚.国内木槿属植物研究现状综述[J].现代园艺,2021,44(17):16-18 [11] 唐丽丹,原蒙蒙,李妍,等.基于形态学性状的木槿属系统发育分类研究[J].河南农业科学,2014,43(2):105-111 [12] 冯敏,幸宏伟,尤琳烽,等.洛神花花青素提取工艺及抗氧化活性研究[J].重庆工商大学学报(自然科学版),2022,12(6):1-10 [13] 李宁,白洋.黄、红麻纤维的特点、生产种植现状及应用范围[J].广西纺织科技,2007,36(2):48-51 [14] 施钦,包学文,华建峰,等.干旱胁迫及复水对海滨木槿光合作用和生理特性的影响[J].应用生态学报,2019,30(8):2600-2606 [15] EDLIN H L. A critical revision of certain raxonomic groups of the Malvales[J]. New Phytologist, 1935, 34(7):1-20 [16] VAN H J M, BE R J, DE L M. Genetic relationships among Hibiscus syriacus, Hibiscus sinosyriacus and Hibiscus paramutabilis revealed by AFLP, morphology and ploidy analysis[J]. Genetic Resources and Crop Evolution, 2000, 47(3):335-343 [17] KRASSILOV V A. New paleobotanical data on origin and early evolution of angiospermy[J]. Annals of the Missouri Botanical Garden, 1984, 71(2):577-592 [18] 曾方玉,周丽君,阮成江.木槿与野西瓜苗花的形态特征和繁育系统的比较研究[J].广西植物,2008,28(6):750-754 [19] 史刚荣.木槿叶片结构的发育可塑性研究[J].广西植物,2005(1):48-52 [20] 宋娟娟,庄东红.木槿属几种植物的染色体数目及其倍性的研究[J].热带亚热带植物学报,2001,9(3):213-216,282 [21] 彭焕文,周颂东,何兴金.中国锦葵科15属26个分类群植物花粉形态及其系统学意义[J].西北植物学报,2018,38(10):1832-1845 [22] 赵艺璇,王鑫,田琳,等. 39个木槿品种亲缘关系SRAP分析[J].四川农业大学学报,2020,38(1):52-57 [23] 李镇兵,任婷,邓姣姣,等.木芙蓉三个品种及近缘种的叶绿体基因组比较分析[J].广西植物,2022,42(12):1-16 [24] 王杰,贺文闯,向坤莉,等.基因组时代的植物系统发育研究进展[J].浙江农林大学学报,2023,40(1):227-236 [25] 邢钰,冯慧喆.叶绿体基因组的比较分析及系统发育研究[J].乡村科技,2021,12(24):82-83 [26] 王涛,徐成体,唐楚煜,等.基于祖先性状演化和叶绿体基因组的马先蒿形态特征分析[J].草地学报,2024,32(7):2039-2053 [27] 洪森荣,林顺来,李盈萍,等.甜高粱叶绿体基因组特征及密码子偏好性分析[J].草地学报,2023,31(12):3636-3650 [28] TAKAYAMA K, TADASHI K, JIN M, et al. Phylogeography and genetic structure of Hibiscus tiliaceus-speciation of a pantropical plant with sea-drifted seeds[J]. Molecular Ecology, 2006, 15(10):2871-2881 [29] CHENG Y, ZHANG L M, QI J M, et al. Complete chloroplast genome sequence of Hibiscus cannabinus and comparative analysis of the Malvaceae family[J]. Frontiers in Genetics, 2020, 11(3):277-289 [30] ABDULLAH, MEHMOOD F, SHAHZADI I, et al. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae):Comparative analyses and identification of mutational hotspots[J]. Genomics, 2019, 122(1):581-591 [31] KWONL H Y, KIM1J H, KIML S H,et al. The complete chloroplast genome sequence of Hibiscus syriacus[J]. Mitochondrial DNA Part A, 2016, 27(5):3668-3669 [32] XU X R, ZHOU S D, SHI X Q. The complete chloroplast genome of Hibiscus Taiwanensis(Malvaceae)[J]. Mitochondrial DNA Part B, 2019, 4(2):2532-2533 [33] CHEN S, ZHOU Y, CHEN Y, et al. fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):884-890 [34] JIN J J, YU W B, YANG J B, et al. GetOrganelle:a fast and versatile toolkit for accurate denovo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1):1-31 [35] HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal:prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010(11):1-11 [36] FINN R D, CLEMENTS J, EDDY S R. HMMER web server:Interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(7):29-37 [37] DEAN L, BJORN C. ARAGORN, a program to detect tRNA genes and mRNA genes in nucleotide sequences[J]. Nucleic Acids Research, 2004, 32(1):6-11 [38] CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+:architecture and applications[J]. BMC Bioinformatics, 2009, 10(15):1-9 [39] TILLICH M, LEHWARK P, PELLIZZER T, et al. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Research, 2017, 45(9):6-11 [40] SEBASTIAN B, THOMAS T, THOMAS M, et al. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16):2583-2585 [41] 杜明川,王伟,鲍海娟,等.葫芦巴叶绿体基因组密码子偏好性分析[J].草地学报,2024,32(2):409-418 [42] MARÇAIS G, DELCHER A L, PHILLIPPY A M, et al. MUMmer4:A fast and versatile genome alignment system[J]. PLOS Computational Biology, 2018, 14(1):e1005944 [43] JULIO R, ALBERT F, CARLOS J S, et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12):3299-3302 [44] TSUKASA N, KAZUNORI D Y, KENTARO T, et al. Parallelization of MAFFT for large-scale multiple sequence alignments[J]. Bioinformatics, 2018, 34(14):2490-2492 [45] XIE Y, YANG G, ZHANG C, et al. Comparative analysis of chloroplast genomes of endangered heterostylous species Primula wilsonii and its closely related species[J]. Ecology and Evolution, 2023, 13(1):e9730 [46] ALI A, JAAKKO H, PETER P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17):3030-3031 [47] FRAZER KA, PACHTER L, POLIAKOV A, et al. VISTA:computational tools for comparative genomics[J]. Nucleic Acids Research, 2004, 32(S2):W273-W279 [48] KALYAANAMOORTHY S, MINH B Q, WONG T K F, et al. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6), 587-589 [49] RONQUIST F, TESLENKO M, VAN D M P, et al. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3):539-542 [50] SUDHIR K, GLEN S, KOICHIRO T. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874 [51] RANNALA B, YANG Z. Inferring speciation times under an episodic molecular clock[J]. Systematic Biology, 2007, 56(3):453-466 [52] SAGULENKO P, PULLER V, NEHER R A. TreeTime:Maximum-likelihood phylodynamic analysis[J]. Virus Evolution, 2018, 4(1):vex042 [53] SANJIB C, SVANTE M, IBRAHIM M N. DNA barcoding and genetic distances in three genera of Naididae (Annelida:Clitellata)[J]. Biologia, 2024, 79(5):1359-1366 [54] XU L, WANG J, ZHANG T, et al. Characterizing complete mitochondrial genome of Aquilegia amurensis and its evolutionary implications[J]. BMC Plant Biology, 2024, 142(24):124-135 [55] 郭玉姣.文竹基因组组装、注释及进化分析[D].新乡:河南师范大学,2020:43-46 [56] 钱俊.丹参的叶绿体和线粒体基因组研究[D].北京:北京协和医学院,2014:1-3 [57] 包维红.基于叶绿体基因组的猕猴桃科分子系统学研究[D].北京:中国科学院大学,2018:1-3 [58] DUAN L, LI S J, SU C, et al. Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae[J]. Molecular Phylogenetics and Evolution, 2021(163):107235 [59] 杨雪平.中新世中期至晚期南亚季风降雨的历史和演变[D].厦门:厦门大学,2020:7-12 |