[1] Díez M J, Ferguson I K. Studies of the pollen morphology and taxonomy of the tribes Loteae and Coronilleae (Papilionoideae; Leguminoseae). 3, Coronilla L. and related genera and systematic conclusions[J]. Review of Palaeobotany and Palynology,1996,94(3):239-257 [2] 中国科学院中国植物志编辑委员会.中国植物志:豆科[M].北京:科学出版社,1998:229 [3] 马乐元,曹致中.直立品系小冠花植株性状及其与产量的相关分析[J].甘肃农业大学学报,2012,47(1):108-112 [4] Symstad A J. Secondary invasion following the reduction of Coronilla varia (Crown vetch) in sand prairie[J]. The American Midland Naturalist,2004,152(1):183-189 [5] 苏佩,山仑.多变低水环境下高粱高产节水生理基础的研究[J].应用与环境生物学报,1997,3(4):305-308 [6] 山仑,邓西平,苏佩,等.挖掘作物抗旱节水潜力-作物对多变低水环境的适应与调节[J].中国农业科技导报,2000,2(2):66-70 [7] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: Effects, mechanisms and management[J]. Sustainable Agriculture,2009,29(1):185-212 [8] Anjum S A, Xie X Y, Wang L C, et al. Morphological, physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research,2011,6(9),2026-2032 [9] Jaleel C A, Manivannan P, Wahid A, et al. Drought stress in plants: A review on morphological characteristics and pigments composition[J]. International Journal of Agriculture and Biology,2009,11(1):100-105 [10] Martin B, Ruiz-Torres N A. Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.)[J]. Plant Physiology,1992,100(2):733-739 [11] Flexas J, Escalona J M, Medrano H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines[J]. Plant, Cell and Environment,1999,22(1):39-48 [12] 付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019 [13] 牛铁泉,田给林,薛仿正,等.半根及半根交替水分胁迫对苹果幼苗光合作用的影响[J].中国农业科学,2007,40(7):1463-1468 [14] Xu Z Z, Zhou G S, Shimizu H. Plant responses to drought and rewatering[J]. Plant Signaling & Behavior,2010,5(6):649-654 [15] Xu Z Z, Zhou G S. Photosynthetic recovery of a perennial grass Leymus chinensis after different periods of soil drought[J]. Plant Production Science,2007,10(3):277-285 [16] 高悦,朱永铸,杨志民,等.干旱胁迫和复水对冰草相关抗性生理指标的影响[J].草地学报,2012,20(2):336-341 [17] 车轩,梁宗锁,吴珍.2种豆科牧草对干旱的生理响应及抗旱性评价[J].草业科学,2010,27(11):89-94 [18] 马乐元.小冠花直立品系农艺性状及抗旱性研究.兰州:甘肃农业大学,2009:44-59 [19] 宋莉英,孙兰兰,舒展,等.干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响[J].生态学报,2009,29(7):3713-3721 [20] 王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2074-2078 [21] 柯世省,金则新.干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响[J].植物营养与肥料学报,2007,13(6):1166-1172 [22] Winter K, Schramm M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchanges in leaves of Welwitschia mirabilis[J]. Plant Physiology,1986,82(1):173-178 [23] 徐飞,郭卫华,徐伟红,等.短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响[J].山东林业科技,2008(4):1-4 [24] 吴甘霖,段仁燕,王志高,等.干旱和复水对草莓叶片叶绿素荧光特性的影响[J].生态学报,2010,30(14):3941-3946 [25] Zlatev Z S, Yoydanov I T. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants[J]. Bulgaria Journal of Plant Physiology,2004,30(3-4):3-18 [26] 邢庆振,郁松林,牛雅萍,等.盐胁迫对葡萄幼苗光合及叶绿素荧光特性的影响[J].干旱地区农业研究,2011,29(3):96-100 [27] Kalaji M H, Govindjee, Bosa K, et al. Effects of salt stress on Photosystem II efficiency and CO2 assimilation of two Syrian barley landraces[J]. Environmental and Experimental Botany,2011,73(3):64-72 [28] Paknejad F, Nasri M, Moghadam H R T, et al. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars[J]. Journal of Biological Sciences,2007,7(6):841-847 [29] 姚春霞,张岁岐,燕晓娟.干旱及复水对玉米叶片光合特性的影响[J].水土保持研究,2012,19(3):278-283 [30] Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany,2000,51(345):659-668 [31] 杨文权,寇建村,雷忠萍,等.小冠花抗氧化保护系统对干旱胁迫及复水的动态响应[J].草地学报,2013,21(2):316-321 |